Department of Physics Papers

Document Type

Working Paper

Date of this Version


Publication Source

Physical Review X


Jammed soft disks exhibit avalanches of particle rearrangements under quasistatic shear. We introduce a framework for understanding the statistics of the progression of avalanches. We follow the avalanches (simulated using steepest descent energy minimization) to decompose them into individual localized rearrangements. We characterize the local structural environment of each particle by a machine-learned quantity, softness, designed to be highly correlated with rearrangements, and analyze the interplay between softness, rearrangements and strain. Local yield strain has long been incorporated into elastoplastic models; here we show that softness provides a useful proxy for local yield strain. Our findings demonstrate that elastoplastic models must take into account the fully tensorial strain field in order to include the effects of changes in local yield strain due to rearrangements, and introduce the equations underpinning a structuro-elastoplastic model that includes local softness.



Date Posted: 22 November 2022

This document has been peer reviewed.