Interplay of rearrangements, strain, and local structure during avalanche propagation
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Jammed soft disks exhibit avalanches of particle rearrangements under quasistatic shear. We
introduce a framework for understanding the statistics of the progression of avalanches. We follow
the avalanches (simulated using steepest descent energy minimization) to decompose them into in-
dividual localized rearrangements. We characterize the local structural environment of each particle
by a machine-learned quantity, softness, designed to be highly correlated with rearrangements, and
analyze the interplay between softness, rearrangements and strain. Local yield strain has long been
incorporated into elastoplastic models; here we show that softness provides a useful proxy for local
yield strain. Our findings demonstrate that elastoplastic models must take into account the fully
tensorial strain field in order to include the effects of changes in local yield strain due to rearrange-
ments, and introduce the equations underpinning a structuro-elastoplastic model that includes local

softness.

I. INTRODUCTION

All disordered solids respond elastically at low strain
but flow plastically at sufficiently high strain. As strain
increases beyond the elastic regime, disordered solids par-
tially relax via intermittent localized rearrangements un-
til they reach the yield strain, where they begin to flow.
Up to the yield strain, disordered solids display surpris-
ingly universal behavior with yield strains quite tightly
distributed around 3% for systems ranging from metallic
and molecular glasses to nanoparticle, colloidal and gran-
ular packings, and with rearrangements localized on the
scale of the constituent particle size [1]. Beyond the yield
strain, however, disordered solids exhibit several different
classes of plastic behavior. Foams can flow indefinitely
via localized rearrangements without ever fracturing [2]
(ductile behavior). Many other ductile systems exhibit
crackling noise or avalanche behavior [3-6], while brit-
tle systems typically exhibit shear banding and brittle
fracture [7]. Here we focus on avalanche behavior.

An avalanche consists of a series of localized rearrange-
ments. Avalanches in driven disordered solids have been
studied in numerous experiments and simulations, in-
cluding Refs. 8-11. A class of models known as elasto-
plastic models describes such avalanches in terms of the
interplay of rearrangements and elastic stress [12]. In
such models, a local yield strain or stress is assigned to
each site, an increase of elastic stress can cause a local
region to yield and rearrange, while conversely, a local
rearrangement can increase stress elsewhere. A typical
elastoplastic model subjected to xy-shear strain is sum-
marized as a flow chart in Fig. 1(a). It has become in-
creasingly clear, however, that rearrangements and elas-
ticity do not tell the whole story. Systems with identical
microscopic interactions can show ductile or brittle be-
havior depending on preparation history [13, 14]. This
has been taken into account in elastoplastic models by
varying the local yield strain distribution by hand [15],
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but a more fundamental approach would take local struc-
ture into account. This is done by phenomenological the-
ories that postulate structural defects prone to rearrange
[16, 17], but an alternate approach, which we adopt here,
is to generalize elastoplastic models to take local struc-
ture into account. The first step in this approach is to
elucidate the connection between local structure and the
physics included in elasto-plasticity models. While it has
been shown that certain local structural environments are
much more likely to rearrange than others [18-21], effects
of rearrangements on local structure have not been estab-
lished, even though it is clear that they must exist. It is
also clear that elastic stresses can distort the structural
environment surrounding a particle [1]. These considera-
tions point to the need for detailed understanding of the
interplay of local structure, rearrangements and elastic-
ity.

In this paper, we go back to basics to untangle the
interplay of local structure, rearrangements and strain
in athermal, quasistatically sheared jammed packings of
soft disks. While some aspects of this interplay have
been understood for a long time, such as quadrupolar
strain fields arising from rearrangements, a full analy-
sis that includes local structure has not been carried
out before. Our analysis leads to a “structuro-elasto-
plasticity” (StEP) framework for avalanches in disor-
dered solids. In brief, as we demonstrate in this pa-
per, the steps that allow construction of a structuro-
elasto-plasticity model for a given system are: (1) We
perform particle-based simulations detailed in Sec. 1T A,
identifying rearrangements by calculating non-affine de-
formation around each particle (Sec. IIB). (2) We then
describe local structure with a machine-learned quan-
tity, softness [1, 20, 22, 23], in Sec. IIC. Softness has
been shown to provide useful insight into the dynamics
of supercooled liquids and glasses [20, 22, 24] and has
been demonstrated to be predictive of rearrangements in
athermal, quasistatically-sheared amorphous solids [21].
Following this approach [20], we describe softness as the
weighted sum of a set of structural quantities based on
the local pair correlation function, where the weights are
chosen to maximize the correlation with rearrangements
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FIG. 1: (a) In a typical elastoplastic model under an
xy-shear strain, rearrangements give rise to xy-strain
and that strain can trigger regions of low local yield
strain to rearrange. This interplay gives rise to
rearrangement avalanches. (b) Summary of the
interplay between rearrangements, strain and softness
(local structure) in our augmented
structuro-elastoplasticity (StEP) model. A
rearrangement decreases the softness of nearby
particles, alters the softness of far-away particles
through volumetric strain, and exerts a deviatoric shear
strain on all particles. Softness determines the local
yield strain, and the local deviatoric strain can trigger
regions of high softness (low local yield strain) to
rearrange, giving rise to rearrangement avalanches.

that occur during avalanches. (3) We then study the
strain field caused by rearrangements in Sec. III A. This
strain field can be decomposed into deviatoric and volu-
metric parts, which have distinct roles in the avalanche
process. We demonstrate that the deviatoric part trig-
gers new rearrangements (Sec. IIIB), while the volumet-
ric part affects the softness field (Sec. IITC). (4) Lastly,
we study how softness and deviatoric strain work to-
gether to create more rearrangements in Sec. I1ID.

The resulting StEP model for a jammed system of
Hertzian disks under athermal quasistatic shear is shown
in Fig. 1(b). This model is richer than a standard elasto-
plastic model shown in Fig. 1(a). For this system, we
find that rearrangements give rise to volumetric strain
that increases softness far from the rearrangement. The
effects of volumetric strain are not typically included in
elastoplastic models but here we find that it plays an im-
portant role. At the same time, we find that rearrange-
ments scramble the structure nearby in a way that lowers
softness nearby and shifts it towards the mean softness.
Finally, rearrangements give rise to a deviatoric strain,
which pushes particles of high softness, which have lower
yield strains, beyond their yield strains so that they rear-
range. Elastoplastic models generally assume that only
the xy-strain pushes particles beyond their yield strains
for systems subjected to xy-shear; our results show that
all parts of the full tensorial strain may play different
roles in the avalanche process.

II. NUMERICAL DETAILS
A. Simulations

We generate two-dimensional packings of N soft disks
in a simulation box with periodic boundary conditions.
The disks interact with each other through the pairwise
additive Hertzian potential:

, 2.5
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0, otherwise,

ua(r) =

where o; is the radius of the ith disk. To avoid crystal-
lization, we use a 1 : 1 mixture of particles with ¢ = 0.5
and o = 0.7. We adjust the system size V so that the
packing fraction ¢ = Y, mo2/V is 0.9.

Starting from random initial conditions, we minimize
the potential energy to find the initial zero-temperature
jammed state. We then repeatedly apply a small shear-
strain step of de, minimizing the energy after each step,
until the total strain reaches €.,,q. The stress-strain rela-
tion for a single configuration, shown in Fig. 2, confirms
the existence of avalanches. We generated 5 trajectories
with N = 10°, 6e = 107°, and €cng = 0.1; and 20 tra-
jectories with N = 4000, de = 107, and €.pnq = 2. This
smaller system with N = 4000 is shown in Fig. 2 for vi-
sual clarity. It is also used to train the machine-learning
algorithm because we need to access larger shear strains,
as detailed in the supplementary material [25]. All of the
remaining analysis was carried out on the larger system.

It is well known [26] that during athermal quasistatic
shear, energy drops mark rearrangements that can be ei-
ther localized or extended due to avalanches. In each
step of strain followed by energy minimization, we cal-
culate the final energy to monitor for energy drops. As
detailed in the supplementary material [25], we use steep-
est descent to accurately simulate the over-damped re-
laxation process from the beginning of the energy drop
to the end. The step size is adjusted on the fly to bal-
ance accuracy and computational cost. During the en-
ergy minimization, we save intermediate configurations
that are equidistant in configuration space, more specif-
ically, the sum over particles of particle displacement

squared, \/va dr?, is chosen to be 0.15 between suc-

cessive frames. This choice is made so that movies gen-
erated from such frames are smooth (see supplementary
movie). Since we use over-damped dynamics, we can de-
fine “time” as the step size divided by the gradient of the
potential energy. With this definition, the distribution of
time intervals between frames is shown in Fig. S1 [25].
For comparison, we also saved intermediate configu-
rations spaced according to a fixed decrease of energy or
fixed time elapsed. However, these schemes resulted in an
uneven distribution of D?nin along the trajectory. More

specifically, we find that the distributions of Dfnin for the
first and second halves of avalanches are the same for the
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FIG. 2: As strain increases, avalanches occur during stress drops. During an avalanche, some constituent particles
rearrange, triggering other localized rearrangements far away in the depicted system of N = 4000 particles. Here,
the non-affine displacement Dr2ni 0 of particles is represented on a black-to-blue-to-red scale with red corresponding

to high values of Drznin' The rightmost plot depicts the cumulative Drznin measured over the entire stress drop.

first sampling scheme but not for the latter two. Since an
even distribution of D12nin is important for training the
machine-learning algorithm, we chose the first sampling

scheme.

B. Identifying rearrangers

To identify rearranging particles, or “rearrangers,” we
calculate D7 . [27]:

M,

Z {r;k - Jkrz’k] i (2)

where the sum is over all neighbors of particle & within
a distance of Rp = 2. Here M} is the number of such
neighbors, r;; and r; « are the vector separations between
particles ¢ and k at two consecutive frames, respectively,
and Jj is the “best-fit” local deformation gradient ten-
sor about particle k& that minimizes D?nin' We will later
extract three different strain components near each parti-
cle k from Jy, including the volumetric (isotropic) strain
k = [Tr(J) — 2]/2, total deviatoric strain € = |\ — Az|,
and shear strain in the xy direction (the direction of the
global shear), €z = [J12 + J21]/2, where A; and Ay are
eigenvalues of J. The strain field far away from a re-
arranger is qualitatively insensitive to the choice of the
cutoff distance Rp. We chose Rp = 2 because for smaller
Rp the fitting to a local affine-deformation tensor Jj oc-
casionally fails, while for larger Rp the near-field strain
field is smeared. A particle with D12nm above a certain
threshold, dsoft, small = 00025 for small particles and

= 0.0015 for large particles, is a rearranger.

9 1

Dinin(k) = M,

dsoft7 large
The rest of the paper presents results for rearrangers
that are small particles in our binary mixture, but we
have verified that results for large-particle rearrangers
are qualitatively the same. When studying the strain
and softness change caused by a rearrangement at a large
distance [Figs. 2, 5, and 6(b), but not Fig. 6(a) because
it is not necessary|, we focus on frames that (1) contain
only one rearranger; and (2) contain no particle that is
not close to the rearranger (distance greater than 5) that

has D? . > 0.01dg,g. The latter criterion is introduced
to exclude frames with multiple rearrangements.

C. Calculating softness

Following previous work [20], we calculate softness us-
ing the support-vector machine (SVM) algorithm with
a linear kernel. Briefly, we characterize the local struc-
tural environment by a set of scalar variables, where each
variable corresponds to a function that depends on the
structure of a particle’s neighborhood. We construct a
high-dimensional space in which each orthogonal axis
corresponds to a different structure function so that the
structure of the neighborhood of a particle is described
by a point in this space. We then select a training set
consisting of two subsets—particles that are rearranging
and particles that are not rearranging, and find the points
in the high-dimensional space for each of these particles.
We use the SVM to construct the coefficients of the lin-
ear combination of structure functions that is normal to
the hyperplane that best separates the two training sets.
This linear combination is what we call the “softness;”
the linear combination can be used to calculate the soft-
ness of each particle as a function of time during the
relaxation process following an avalanche.

To select the training set, we identify 7500 rearrang-
ing particles with D?nin > dgofe between two adja-
cent frames during energy minimization and 7500 non-
rearranging particles with D?ni n < dparq between two
energy-minimized frames separated by a shearing strain
of de. We use two sets of parameters listed in Table I of
the supplementary material [25].

For a good training set we need non-rearranging par-
ticles that do not rearrange over a long period of time
prior. To obtain such particles, we simulated smaller
systems over a longer shear strain window. Specifically,
we generated 20 trajectories with N = 4000, de = 104,
and €.,q = 2. After training, we verified that the soft-
ness distribution, P(5), and the softness distribution for
rearrangers, P(S|R), are nearly the same; and that the
probability that a particle with a given softness is rear-
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FIG. 3: Mean volumetric strain k (top row), mean deviatoric strain € (middle), and mean shear strain in the xy
direction (the direction of the global shear) €,, (bottom) per frame caused by a rearranging particle at the origin.
Angular-averaged (left column), angular-averaged absolute value (middle), and angular (right) versions are shown.

Note that the middle row/column plot is not shown because € is always non-negative. In the top left plot, solid

circles represent positive values of k(r), while open circles represent negative values. Red lines are fits to
continuume-elasticity predictions detailed in the text and Appendix.

ranging, Pr(S), is very similar for the two system sizes
(see Fig. S2 of the supplementary material [25]).

We must also choose structure functions to character-
ize softness. Although previous work employed two-body
as well as three-body structure functions, we found that
the three-body ones are computationally expensive and
contrbute less than 1% increase in the accuracy, so we
neglected them [20]. To further improve computational
efficiency, we use linear two-body structure functions:

where

1- (Tij - Tm)/(rm—l - 'rm); lf Tm—1 <r< Tm,
1—(rij — Tm)/ (Pmt1 = Tm),

0, otherwise,

Imyij = if o <7 < T,

(4)
and 7, is the location of the mth radial function. The
training and testing accuracy is the same for these struc-
ture functions as for the standard Behler-Parrinello struc-
ture functions with Gaussian smoothing [28]. We use
multiple sets of 7, listed in Table II of the supplemen-
tary material [25].

Finally, we adopt the ensemble method to calculate
softness: we train multiple hyperplanes and average their
predictions. For each combination of training set (Ta-
ble 1 of the supplementary material) and structure func-



tion placement (Table 2 of the supplementary material),
we train 5 hyperplanes. This yields 60 hyperplanes (per
species) in total. The validation accuracy for individual
hyperplanes varies in a small range of 0.878 —0.926. The
final softness of a particle is the average of the signed
distance to all hyperplanes.

In summary, the softness of particle ¢ is essentially a
weighted integral over the local pair correlation function
gi(r). The weight function is inferred by the linear sup-
port vector machine to maximize the accuracy of predict-
ing rearrangers. As in Ref. [20], the weighting is highly
negative at the first peak of g(r), implying that parti-
cles with fewer neighbors have higher softness, consis-
tent with intuition based on the cage picture. Softness
and rearrangements are strongly correlated, as we will
show in Fig. 5(b), but are distinct concepts. Softness is a
structural quantity while rearrangements are dynamical
objects.

III. DECONSTRUCTING THE AVALANCHE
PROCESS

In Fig. 2 and the supplemental video [25], we confirm
that during avalanches, rearrangements are indeed local-
ized and sequential, as assumed in elastoplastic mod-
els [12]. Moreover, consecutive rearrangements can be
very far apart. In this section, we study the interplay
of rearrangements, softness and elasticity piece by piece,
first examining the effects of rearrangements on strain in
Sec. III.A, then the effects of strain on rearrangements
in III.B, and the effects of rearrangements and their re-
sulting strain fields on softness in III.C, and the effects
of strain and softness on rearrangements in III.D. Our
results in this section are summarized in Fig. 1(b).

A. Strain field due to rearrangement

We begin by examining the effect of a rearrangement
at the origin on the strain at r, averaged over many re-
arrangements.

The near-field behaviors of the local strains depend on
microscopic details of how rearrangements locally deform
their surroundings, but in the far field we expect the local
strains to be well-described by elasticity theory. In the
far field, one typically approximates the rearrangement as
a point plastic shear strain, equivalent to a pair of point
force dipoles. The dipole can have any orientation in
a disordered system, but is not isotropically distributed
due to the global shear breaking rotational symmetry.
The responses to this source at position r and time ¢ fol-
lowing a rearrangement at the origin at ¢ = 0 are given in
Egs. (A5)-(AT). The shear strain source due to the rear-
rangement is very long-lived, so the response to the point
plastic shear strain is well-approximated by the infinite-
time limit, shown in Eq. (A8). Specifically, €,, has an
r~2 radial dependence and a quadrupolar angular de-
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FIG. 4: (a) The time-dependent pair correlation
function of rearrangers, ga(r,df) for different numbers
of frames ¢ f following the rearrangement at the origin
at frame f = 0. (b) The time-averaged directional plot

92(r) = £ 35— 92(x,f), where F = 20.

pendence (bottom row in Fig. 3). This is consistent with
previous analytical derivations [29], numerical measure-
ments [9, 26, 30], and experiments [9, 31]. The deviatoric
strain, € (middle row in Fig. 3), likewise decays as 72
(red solid line in left plot) but with an isotropic angu-
lar dependence (right plot), as expected from continuum
elasticity (see Appendix A). The existence of this strain
field arising from the rearrangement is represented by
the arrow connecting “Rearrangements” to “Deviatoric
strain” in Fig. 1(b).

The volumetric strain k(r) is typically neglected in sys-
tems of fixed total volume but as we will show, it plays
an important role because softness is strongly dependent
on local density. It is the sum of two terms. The first
term is the volumetric strain in response to a shear strain
source, given in Eq. (A5). This is a sin(20)r=2 term
that dominates in the top middle and top right plots of
Fig. 3. The second term is the effect of a point compres-



sion source since the rearrangement can also give rise to
local plastic compression. This point compression causes
the surroundings to dilate (k > 0). This has a tran-
sient effect since the total volume of the system is con-
served, but is significant because it gives rise to a contri-
bution to k(r) [Eq. (A9)] that does not angle-average to
zero. The top left plot of Fig. 3 shows that the angular-
averaged volumetric strain k(r) is positive at most r and
does not exhibit a power-law decay. As we will detail in
Appendix B, the shape of this curve can be explained by
the convolution of a finite-time elastic kernel and a point-
compression source with Gaussian time dependence (red
solid curve). Ref. [32] also appears to provide evidence
of local dilation in the strain field due to a rearranger.
These results are represented by the arrow connecting
“Rearrangement” to “Volumetric strain” in Fig. 1(b).

Although the results shown here are for two-
dimensional systems, we have confirmed that the ex-
pected scalings for volumetric and deviatoric strain are
observed in 3 dimensions [25], providing strong evidence
in favor of our interpretation of the roles of volumetric,
deviatoric and xy-strain.

We next show that deviatoric and volumetric parts
have distinct roles in the avalanche process. The devi-
atoric strain triggers new rearrangements (Sec. IIIB),
while the volumetric strain affects the softness field

(Sec. IIIC).

B. Strain field triggering rearrangements

We now turn to the effect of the induced strain on
the next rearrangement. Elastoplastic models typically
assume that it is the zy-component of strain due to a
rearrangement triggers other rearrangements in a system
subjected to an externally applied xy-strain [12]. To test
this, we first compute the frame-dependent pair correla-
tion function of rearrangers go(r,df), namely the prob-
ability of finding a rearrangement at r after 6 f frames,
given a rearrangement at the origin at frame §f = 0.
Results for several values of § f are presented in Fig. 4.

We first focus on the temporal dependence. As df in-
creases, the rearranger pair correlation function go(r, d f)
for r < 5 decreases while that for r 2 5 increases. This
occurs because the probability that a rearrangement will
jump to a distant location increases with time (as mea-
sured in frames). The evolution with the number of
frames reflects the course of the avalanche due to prop-
agation of the strain induced by a rearrangement, which
alters softness and can trigger further rearrangements.

Radially, go decays approximately as r—3 for suffi-
ciently large r, independent of §f. This is consistent
with either € or €y, which both decay as r~2, due to
the following argument. Two earlier studies of systems
with spherically-symmetric potentials found that the cu-
mulative distribution of the local yield strain has a low-
yield-strain tail described by a power law with exponent
1.6 [33, 34]. On general grounds this scaling should also
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FIG. 5: Performance of machine-learned softness. (a)
The distribution of softness for all particles (black solid)
and for rearrangers only (blue dotted). There is a
pronounced difference between the two distributions.
The two peaks in the black solid curve comes from
particles with four and five neighbors, respectively, as
we will demonstrate in the supplementary material [25].
(b) The probability that a particle is rearranging, Pg,
as a function of its softness. As the softness increases,
Pr increases by four orders of magnitude, verifying the
high correlation between softness and rearrangements.

apply to our system [33], so the probability that a rear-
rangement is triggered by € or €gy ~ r~2 should scale as
(r=2)16 = =32 roughly consistent with the scaling we
observe in go.

The angular dependence of g (r) is nearly isotropic and
clearly does not show a quadrupolar dependence. This
is consistent with the angular dependence of €, not €,
(see Fig. 3). We therefore conclude that rearrangement-
induced shear strain in any direction can trigger rear-
rangements equally well. This result contradicts the



assumption of many elastoplastic models that €., is
solely responsible for triggering rearrangements. Such
an assumption might be a good approximation in shear-
banding systems, where anisotropic (quadrupolar) re-
arranger pair correlation functions have been observed
[9, 32, 35], but is not valid for the ductile system stud-
ied here. A recent elastoplastic model takes into account
the entire strain tensor [10]. Our result justifies such an
approach.

In short, the results of this section show that it is de-
viatoric strain, €, that is responsible for triggering rear-
rangements, justifying the arrow connecting “Deviatoric
strain” to “Rearrangements” in Fig. 1(b).

C. Effects of rearrangements and strain on softness

In training the machine-learning algorithm to obtain
softness, we find that 90% of rearrangers have S > 0,
while 84% of non-rearrangers have S < 0. Moreover,
Fig. 5 shows that the softness distribution for rearrangers
is very different from that of the whole population, and
that the probability that a particle rearranges increases
by four orders of magnitude as softness increases. These
results verify that softness is strongly correlated with
the propensity to rearrange. These results establish
the arrow connecting “Softness” to “Rearrangements” in
Fig. 1(b).

In turn, rearrangements can affect softness. We find
that the average difference in softness of a rearranger im-
mediately before and after the rearrangement is (AS)g =
—0.75; the softness of a rearranger drops significantly
when it rearranges. Rearrangements can also affect the
softness of particles elsewhere; we plot the mean softness
change AS(r) of a particle at r due to a rearrangement at
the origin in Fig. 6. Rearrangements make overlapping
neighbors (r < 1) softer and non-contacting nearby par-
ticles (1 < r < 5) less soft. Rearrangements also make
distant particles (r > 5) softer or harder depending on
the orientation. The distance and angular dependences of
the far-field AS are consistent with the volumetric strain
k (see Fig. 3), suggesting that it is caused by k. This is
not surprising since softness is highly sensitive to density.
This result establishes the arrow connecting “Volumetric
Strain” to “Softness” in Fig. 1(b).

To understand the near-field effect of rearrangements
on softness, we first note that in a thermal Lennard-Jones
system, the mean softness of non-rearranging particles
with a given initial softness Sy evolves toward its mean
value for any Sy [20] due to rearrangements of other par-
ticles. Here we ask if the same effect exists in our qua-
sistatically sheared system. For particles within a short
distance » < 1.6 to a rearranger, we plot the softness
change vs. the original softness and perform a linear fit,
presented in Fig. 7 (a). We plot the slopes ¢ (r) of such
fits at several different r in Fig. 7 (b). For r < 10 and
r > 30, ¢ is negative, indicating that softness in our sys-
tem also has the tendency to approach its mean at these

distances. However, ¢y is positive for 10 < r < 30, sug-
gesting the opposite effect. The effect is small and negli-
gible, and is probably because softness tends to increase
in this range of r [see Fig. 6 (a)], and the softer a parti-
cle is, the floppier its local environment is, and the more
tendency it has to deform, even if such deformation gen-
erally raises S. More important is the magnitude of ¢; (r):
we see that the magnitude of ¢;(r) decays rapidly with r
and is well described as a power law: |c1(r)| = 0.06r=32.
Finally, ¢; (r) appears to be independent of the angle 6.

Overall, our results suggest that the mean softness
change of a particle with softness S at r when a particle
at the origin rearranges is:

AS(r,S) = co(r) + c1(r)(S — (S)) + bk(r) (5)

where ¢1(r) is given in Fig. 7 (b), and b =~ 207. To
find ¢g, we subtract bk(r) from AS(r). Similar to ¢1, we
do not find any angular dependence in ¢y. We plot its
r-dependence in Fig. 7(b). Clearly, ¢y and ¢; exhibit sim-
ilar power law decays; we find |co(r)| = 0.3r =31, With
the fit, Eq. (5) yields the red curve in Fig. 6(a). Note
that the red curve provides an excellent description of
the black points (AS(r)), capturing the sign as well as
the magnitude in the far field.

These results justify the arrow connecting “Rearrange-
ments” to “Softness” in Fig. 1(b).

D. Effect of strain and softness on rearrangements

We have shown that rearrangements give rise to devi-
atoric strain that in turn triggers new rearrangements.
We have also shown that rearrangers tend to have high
softness. Here we examine how S and € work in tandem
to induce rearrangements. When a particle starts rear-
ranging at frame f, we rewind 0 f frames to calculate the
shear strain exerted on this particle between f — 6 f and
f, and the softness S at frame f — §f. As Fig. 8 shows,
the amount of shear strain needed to trigger a rearrange-
ment depends strongly on S, but only very weakly on
0f. Thus, softer particles require less shear strain to
start rearranging (they have lower local yield strains).
This is consistent with earlier results in thermal systems
that found that softer particles have lower activation en-
ergies to rearrange [20, 23]. Indeed, we have conducted
thermal molecular dynamics simulations to find energy
barriers comparable to those predicted by Fig. 8 [25].

The results of this section establish that both softness
and deviatoric strain are important to trigger future re-
arrangements, justifying the joining of the arrows con-
necting “Softness” to “Rearrangement” and “Deviatoric
strain” to “Rearrangement.” This completes the deriva-
tion of Fig. 1(b). Note that we have obtained a quanti-
tative relation for each arrow in the diagram.
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FIG. 6: (a) Mean softness change, AS, per frame caused by a rearranging particle at the origin. A prediction from
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Same as (a), but for its absolute value. (c) Mean softness change with directional dependence shown.

IV. DISCUSSION

In this paper, we study avalanches that occur dur-
ing energy drops when a two-dimensional jammed bi-
nary Hertzian disk packing is sheared quasistatically, us-
ing steepest descent to follow the minimization process.
We have developed an analysis framework that untan-
gles the interplay of local structure, plastic events and
elasticity. This framework can be applied to any ather-
mal disordered solid under mechanical load as long as
the particle positions are tracked with time. Thus, this
paper provides a blueprint for constructing structuro-
elastoplasticity models that can be applied to a broad
class of systems. This includes systems composed of fric-
tional particles and/or particles of complex shape and
size distributions. It also includes systems that exhibits
shear-banding and brittle failure as well as ductile sys-
tems. Finally, it can be generalized in any number of
spatial dimensions, as we have done to some extent for

d=3[25).

The results of our analysis for Hertzian jammed pack-
ings are summarized in Fig. 1(b). We expect that the
qualitative results of Fig. 1(b) apply quite generally to
both two and three-dimensional ductile disordered solids
that exhibit avalanche behavior. We find that (1) a re-
arrangement alters the softness of a nearby particle ac-
cording to the difference between its softness and the
mean softness. This behavior was first observed for 3D
Lennard-Jones systems above the glass transition [20],
indicating that it is quite general. (2) A rearrangement
alters the softness of distant particles through volumet-
ric strain. The existence of a transient volumetric strain,
which has not been considered significant, is a feature
of elasticity. The fact that local dilation/compaction in-
creases/decreases softness is consistent with the previ-
ously observed dependence of softness on local density
in 3D Lennard-Jones mixtures [20], with the observation
that shear bands have reduced local densities in the same
system [36], and with our physical understanding of soft-

ness; and is therefore also quite general. (3) A rearrange-
ment exerts a deviatoric strain on the rest of the system.
This should be generally true for isotropic systems in
any dimension. (4) The average yield strain decreases
with increasing softness. This is consistent with previ-
ous results for 3D Lennard-Jones simulations [20], 2D
colloidal glass experiments [37] and 3D aluminum poly-
crystal simulations [23], showing that the energy barrier
for rearrangements decreases with increasing softness.

Fig. 1(b) can be viewed as a structuro-elasto-plastic
(StEP) model that builds upon earlier elasto-plastic mod-
els. Our results show that it is essential for the model to
include the full tensorial strain induced by a rearrange-
ment as well as a variable to characterize structure. Ac-
cordingly, our StEP model includes the distinct effects
of both volumetric and deviatoric strain and incorpo-
rates structure through softness, which evolves dynam-
ically due to rearrangements.

Note that we find that rearrangements are triggered by
deviatoric rather than shear strain indicating shear strain
in any direction due to a rearrangement can trigger the
next rearrangement equally well. FElasto-plastic models
typically focus on the component of the local shear strain
with the same orientation as the global shear strain [12,
38]. At least for ductile systems, which do not build
up much strain in the direction of applied strain, this
assumption misses important physics. More significantly,
we have elucidated how the local structural environment
of a particle affects and is affected by rearrangements and
strain.

It is important to note that there are additional con-
tributions to the interplay between softness, strain, and
rearrangers that are not included in Fig. 1(b). For ex-
ample, softness should affect the strain field caused by
a rearranger, since softer regions intuitively should have
lower elastic moduli. We have shown that on average,
the strain field is well-described by continuum elasticity,
but there are fluctuations around this average strain re-
sponse that we have not treated here. As another exam-
ple, not only volumetric strain but also deviatoric strain
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affects softness, as reported in Ref. 1. However, we find
that the former effect is dominant, which is not surpris-
ing since softness depends sensitively on density. We find
that the rearranger pair correlation function is isotropic,
which suggests that the deviatoric strain is the main con-
tributor in triggering rearrangements, but the volumetric
strain is theoretically also capable of triggering rearrange-
ments. Also the zy-strain may be important in more
brittle systems where the global strain can accumulate
by a significant amount. Fig. 1(b) should therefore be
viewed as a summary of the leading effects that should
be included in a structuro-elastoplasticity model for the
system studied, not as a summary of all the effects that
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FIG. 8: The amount of shear strain exerted to the local
environment of a particle before it starts to rearrange
versus the softness of that particle, observed 50, 100,

and 200 frames before the rearrangement.

exist. In other words, we have obtained not the complete
description of the interplay of softness, rearrangements
and elasticity, but a minimal model that includes only
the dominant effects.

Our results point to a few factors that may contribute
to the ductile behavior observed. First, we find that fu-
ture rearrangements are triggered by the total deviatoric
strain, rather than the zy-shear strain that is typically
assumed in elastoplastic models. As a result, rearrange-
ments trigger successive rearrangements that are isotrop-
ically distributed. In brittle systems, by contrast, the
ry-strain may well play a more important role since the
strain in that direction builds up with relatively few re-
arrangements or changes of local structure as the sys-
tem approaches yield [21]. That anisotropy may pro-
mote shear band formation by triggering successive re-
arrangements preferentially in the direction of maximum
ry-strain.

In addition, a rearranger lowers the softness of nearby
particles, discouraging them from rearranging, while on
average raising the softness of distant particles, facilitat-
ing their rearrangement. Third, rearrangements tend to
push the softness of nearby particles towards the mean,
which is quite high for the ductile system. Our approach
can be applied directly to systems that exhibit shear-
banding and brittle failure to see whether the interplay
is different in such systems. Earlier papers have shown
that softness is readily identified in experimental systems
for which the positions of particles can be tracked with
time [1, 39, 40]. Our analysis approach for disentangling
the interplay of softness, rearrangements and strain can
therefore be applied directly to experiments as well as
simulations. It is likely that the key to understanding
ductile vs. brittle behavior is encapsulated in this inter-
play.

Besides the brittle-to-ductile transition, many other



phenomena in plasticity of disordered solids have also
attracted recent attention, for example, power-law distri-
bution of avalanche sizes [9], the ability to reach a steady
state under cyclic shear [11], and the discontinuity of the
first instability location as a function of the shear orien-
tation [30]. It will be interesting to study the role of local
structure in each of these phenomena in future studies.

An important feature of our approach is that it is built
on a machine-learned structural quantity, softness. How-
ever, many different predictors of rearrangements have
recently been tested for two different Lennard-Jones sys-
tems, each prepared with two different protocols [21]. In
principle our approach could be used for any of the pre-
dictors evaluated in Ref. [21], subject to practical con-
straints. Among the predictors, softness has the advan-
tages of excellent scalability [O(N)], high performance
in prediction of rearrangements [21], the lack of need
to specify the interaction potential, and easy general-
ization to wider class of systems, including ones that
lack spherically-symmetric potentials [40, 41]. Softness
can also readily be generalized to higher spatial dimen-
sions [42].

An alternate theoretical approach has been to view
shear bands as associated with critical phase transitions
such as the random-field Ising transition [43, 44]. The
kinetics of such transitions can also involve avalanches,
but the underlying mechanisms are somewhat different;
for example, elasticity does not mediate the triggering
of avalanches in the random-field Ising model while it is
well-recognized to play an important role in avalanches
of ductile disordered solids.

For over a century, statistical mechanics has served
as an extremely powerful tool for dimensional reduction,
distilling overwhelming amounts of microscopic informa-
tion into distributions of one or a few relevant micro-
scopic variables in order to uncover the microscopic ori-
gins of macroscopic, collective behavior. However, non-
linear, far-from-equilibrium phenomena such as plasticity
in disordered solids have posed a longstanding challenge
to statistical mechanics. In this paper, we have harnessed
the power of machine learning for dimensional reduction
to identify softness, along with D12nin’ as two relevant
microscopic variables on which to construct a theory of
plasticity. Furthermore, we untangled the interplay of
softness, D12nin and elasticity to accomplish what statisti-
cal mechanics is designed to do—to bridge the gap between
microscopic particle-level physics and macroscopic emer-
gent behavior (plasticity). We anticipate that our use of
a machine-learned quantity as the basis of a theoretical
approach to collective behavior is a harbinger of future
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research exploiting machine learning to develop theories
of particularly thorny many-body physics problems.
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Appendix A: Continuum-elastic predictions for
strain field induced by a rearrangement

The far field of rearrangement events has long been
modelled as that of an Eshelby inclusion, which is the
elastic response to a point strain source [29].

Elastoplastic models typically only consider o, use
an elastic kernel which assumes the medium to be in-
compressible and take the limit of infinite time (mechan-
ical equilibrium). Since we are interested in understand-
ing the course of avalanches during steepest descent, we
need the kernel at finite times with overdamped dynam-
ics. We sketch below the derivation of all components of
the continuum strain field.

We begin by considering an infinite elastic medium
subject to a point force turning on at t = 0 at the origin.

We wish to find G (r,t) such that

207, .
TG %% | suswern) =0,
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Taking a Fourier transform in space and a Laplace
transform in time gives us

- 1 _
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with the last equality holding for an isotropic medium
in 2d. Here t is the vector normal to §.

We invert the spatial Fourier transform, and then the
Laplace transform. The result is
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of the indices allows us to compute Gjjx, the strain re-
sponse to a dipole of force.
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Following previous work, a dipole of zy shear strain
at the origin is equivalent to a pair of force dipoles [29].
Assuming this source gives us the elastic strain field (now
written in terms of the Poisson ratio v and the “diffusion

constants” Dp = % and Dy, = )‘;ﬁ =2D1/(1—-v)
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The familiar power law dependences from elastic equi-
librium are realized in the large-time limit
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These results together explain why the volumetric
strain is observed to have a sin(26) dependence, and why
the deviatoric strain magnitude is isotropic.

Notice, however, that [ df k(r,0,t) = 0 for such a shear
strain source. To explain the apparent nonzero value
of [dfk(r,0,t) for short times in our simulations, we
must consider the effect of a transient expansion source.
The local region surrounding a rearrangement might be
expected, on average, to have a different volume than in
the initial state.

In an infinite system, the kernel above gives for a point
plastic compression at the origin:

1+v 1 2

k(c)(r,) 5 47rDLt ~DT

(A9)



As long as the Poisson ratio is close to 1, this precisely
conserves volume in an infinite system, when added to
the point compression at the origin.

We expect that since our system is finite (and the
short-time Poisson ratio is far from 1), this kernel would
need to be modified near the boundaries of the system
to satisfy the periodic boundary conditions and conserve
the total volume. We find that it works adequately for
the bulk for our data however, and our data at r close
to the box size are difficult to resolve - we have chosen
the y-range in the top-left box of Fig. 3 to exclude points
beyond r = 30 because the error bars are comparable to
the absolute value.

The full response to a given event will be a sum
of the responses to strain [Eq. (A8)] and compression
sources (A9) with appropriate prefactors, although for
measurements where its contribution is nonzero we ex-
pect the strain source to be dominant.

Appendix B: Comparison of analytical and
numerical k(r), €, and ¢;, results

Since we have derived a analytical formulae for the
strain, Eqs. (A8) and (A9), we can make comparison
with our numerical results. We have numerically mea-
sured instantaneous elastic constants A + 2u = 0.3533
and v = 0.3408 for our system by applying a small (10~%)
strain on the simulation box and measuring the force.

The time interval between frames, ¢, is not fixed since
we record frames that are equidistant in configuration
space; see the supplementary material [25]. We plot the
distribution of times between frames in supplementary
Fig. S1, and find that the most probable time interval is
t ~ 100. The definition of our time implies that n = 1.
With these parameters, Eq. (A9) predicts a Gaussian
that decays to 0.1% of its peak height at » = 31, roughly
consistent with the actual result presented in Fig. 3.

For the total deviatoric strain € and zy-strain €, we
have numerically confirmed that they decay as power
laws: € = ¢/r? and €,y = ¢z, /r? (Fig. 3), which matches
the prediction in Eq. (A8). The prefactors, i.e., con-
stants ¢ and ¢z, were not predicted in Appendix A since
our theory does not take into consideration the average
amount of plastic strain caused by a rearranger.

Nevertheless, we can approximately measure this
quantity. The strains in equation (A8) are for a plas-

tic strain €B) = €gAd(r), i.e. the prefactor of the far-field

strain is equal to the product of the area A = 73 of the
rearrangement and its plastic strain.

If the rearrangements have a distribution of plastic
strains €y and orientations 6’, then by rotating the kernel
and assuming the distribution of €’ is even we find that
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2 r2
We will neglect the cos46’ and cos26’ in our rough
estimates.
We find that the D12rnin correlation length [1] is rp =

3.6, i.e., the correlation between D? . (0) and D? . (r)
is approximately exp(—|r|/3.6) for small |[r|. The area
of the event is then estimated as 7r%. We then calcu-
late the local-fit deviatoric and xy-strain within a ra-
dius of rp around each rearranger, and find on average
€ = 3.6 x 1072 and €xy = 1.8 X 10~* at the rearrang-
ing site. Theoretically, this predicts that the prefactors
are ¢ = &2 = 0.031, czy = Heyyr(|cosdl]) =
1.0 x 1073, and ¢ = 15%€,,r3(|sin26]) = 5.0 x 1074
This roughly matches the fits presented in Fig. 2 of the
main text, which have ¢ = 0.03, ¢, = 1.5 x 1073, and
cr = 5.0 x 1074

Why do our numerical results match the analytical
derivations for shear strains produced by a shear source,
Egs. (A6) and (A7), in the infinite-time limit of Eq. (A8),
but match that for the volumetric strain produced by a
compression source, Eq. (A9), at a finite time? It turns
out that at the rearranging site, the plastic shear oc-
curs over a much longer time interval than the plastic
compression. We plot these strain components at the re-
arranging site versus time in Fig. 9. If we approximate
such strain-time curves with Gaussians, then the numer-
ically measured strain at distance r should be the convo-
lution of previously-derived finite-time analytical result
and Gaussians, i.e.,

0
k(r, numerical) = ¢, / exp(—at®)k(r,t — t')dt’,
0
€y (7, numerical) = czy/ exp(—Bt%) gy (r,t — t')dt’,
. (B4)

where k(r, t) and e, (r, t) are given in Egs. (A9) and (A6),
respectively. We numerically compute these integrals for
various parameters. For k, the integral fits numerical
data well at a = 6.1197 x 1075, as shown in Fig. 3.
This indicates that the width of the Gaussian is about
a~1/2 = 127.83, roughly consistent with supplementary
Fig. 9. For €,,, however, it turns out that Eq. (B4) can-
not closely fit our numerical result, which decays slightly
slower than =2 (Fig. 3). No matter how small 3 is,
Eq. (B4) gives an e, that decays slightly faster than
r~2. We see two possible reasons for this difference: (1)
A finite size effect as r becomes comparable to the box
size, or (2) the interference between simultaneous rear-
rangements in our numerical results. As we discuss in
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FIG. 9: (left) The local-fit volumetric strain of a
rearranger versus time. To average over different
rearranging events, they are temporally aligned so that

they start (Dfnin raises above the threshold) at ¢t = 0.
Rearrangements usually end at some time ¢ between 102
and 103, (right) Same as left, except for local-fit
xy-shear strain.
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Sec. II B, we filter out frames with multiple rearrange-
ments, but such filtration cannot be perfect.
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