Unsupervised Distance Metric Learning Using Predictability

Loading...
Thumbnail Image
Penn collection
Technical Reports (CIS)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

Distance-based learning methods, like clustering and SVMs, are dependent on good distance metrics. This paper does unsupervised metric learning in the context of clustering. We seek transformations of data which give clean and well separated clusters where clean clusters are those for which membership can be accurately predicted. The transformation (hence distance metric) is obtained by minimizing the blur ratio, which is defined as the ratio of the within cluster variance divided by the total data variance in the transformed space. For minimization we propose an iterative procedure, Clustering Predictions of Cluster Membership (CPCM). CPCM alternately (a) predicts cluster memberships (e.g., using linear regression) and (b) clusters these predictions (e.g., using k-means). With linear regression and k-means, this algorithm is guaranteed to converge to a fixed point. The resulting clusters are invariant to linear transformations of original features, and tend to eliminate noise features by driving their weights to zero.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2008-06-13
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-08-23.
Recommended citation
Collection