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Abstract

Distance-based learning methods, like clustering and S\évks dependent on
good distance metrics. This paper daasupervisedetric learning in the context
of clustering. We seek transformations of data which gleanand well separated
clusters whereleanclusters are those for which membership can be accurately
predicted. The transformation (hence distance metriclpiained by minimizing
theblur ratio, which is defined as the ratio of the within cluster varianivéded
by the total data variance in the transformed space. Fomnization we propose
an iterative procedureClustering Predictions of Cluster MembersHipPCM).
CPCM alternately (a) predicts cluster memberships (esingdinear regression)
and (b) clusters these predictions (e.g., ugingeans). With linear regression and
k-means, this algorithm is guaranteed to converge to a fixad.pbhe resulting
clusters are invariant to linear transformations of ordjifeatures, and tend to
eliminate noise features by driving their weights to zero.

1 Introduction

In data mining one often wants to figodclusters in a set of data using eigmeans, agglomera-
tive or spectral clustering methods (Jain et al., 1999; Ng.e2002). Though itis clear that clusters
depend on the distance metric, what constitutgs@cluster is a difficult question, and depends on
the goal of the clustering. Many probabilistic, informatitheoretic, and graph theoretic measures
have been proposed to capture the quality of clusteringriaret al., 2000). Most of these criteria
try to measure the similarity between points in a clusted, tius depend on some distance metric.
In a supervised setting, such as for classification prohleesearchers have developed criteria for
learning the distance metrics, either when all points drel&d with clusters (Shalev-Shwartz et al.,
2004; Shental et al., 2002), or when “side information” abpairs of points either being, or not
being in the same cluster (Xing et al., 2003) are available.

We propose a method of learning metrics in an unsupervigédgeA good distance metric would
lead to tight and well-separated clusters in some projespade. We quantify this by introducing
a new criterion, the ratio of the average distance of pointtheir nearest cluster centers to the
average distance of the data points to their overall meahenransformed space. For a linear
transformationA of the data, we call our criterion thgur ratio BR(A). Our goal then is to find
the A which minimizes thisblur ratio. The criterion resembles the one thaear Discriminant
AnalysigLDA) minimizes, except that we are doing unsupervisedieey, while LDA assumes that



labels are known. In effect, we are learning a distance mstrich that the transformation obtained
projects the data to a subspace where the clusters are KMghitnization of theblur ratio handles
data with high-dimensional noise features by tending teedtfieir weights to zero.

For the minimization we propose an iterative algoritl@hystering Predictions of Cluster Member-
ship (CPCM), which first predicts cluster membership, and theinde new clusters by clustering
the predictions of cluster membership. In CPCM we combinard blustering algorithm with a soft
prediction algorithm (i.e. the prediction step predicisstér probabilities and not cluster member-
ships). The intuition behind using predictability is tHawe generate clusters using a set of features,
we should also be able to predict the membership of the chigting the same features. By using
predictions of cluster membership, we can take advantagepdrvised learning methods to bet-
ter solve unsupervised and semi-supervised problems @llbagi al., 2003). This paper explains
the CPCM algorithm in detail and characterizes some of igerties for the case where linear re-
gression is used for prediction, including showing thafveg clusters which are invariant to linear
transformations of the data. CPCM can be easily extendedffaraht prediction and clustering
techniques; we discuss the use of Reproducing Kernel Hifgaces (RKHS) for prediction in this
context, and show that CPCM gives superior perfomance tdasimetric learning and unsuper-
vised methods when there are many spurious features. CP@Mes the contribution of irrelevant
features, greatly improving cluster quality.

2 Optimal Distance Metric and Blur Ratio

Consider aV x p dimensional matrixX whereN is the number of points angdis the number of
features. We will us&; to denote théth row andX ; to denote théth column inX. This makes the
feature vector into a row vector. We will use row vectors tigioout. Define&C = {C,---, Ck}to
be the set of clusters. Lét¢ be the simplex over th& dimensions (the subspace&fdimensions
such that every point looks like a probability, with compotsdying in (0,1) and summing to 1) with
er € Ac denoting a unit direction. Denoting the clustering funitiy ¢, we have the following
map

X FmERS() L RP — C (1)
Usingc(), we define the matri% such thaZ; = e;..(x,)=c, . Note thatZ; is a K dimensional row
vector on the simpleX\¢c. A¢ can be regarded as a probability simplex for the cluster neeshiip
with Z;;, equaling the probability of pointbeing in clustek. Defineu,, € R? as the center in the
feature space for clustéry.

Our goal is to find the linear transformation of the da&tasuch that the distance meti€z,y) =
V(z —y)A(z — y)T gives the lowesblur ratio. We will build up theblur ratio by a sums of

K
squares decomposition: Within cluster variai€6C = >~ > (Xi — i) A(X; — )"
k=11:¢(X;)=C}
N
and, Total variance5 ST = Z(Xi —p)A(X; — ). Herep = X andA is a symmetric positive

=1
semi-definite matrix. We can then define thlar ratio and the optimization problem as

. _ Ssc
win BR(A, ¢) = 5or

Following the argument fok-means type algorithms (Peng & Xia, 2005), it is clear thairozing
theblur ratio is NP-hard. Thus we rely on the existence of good approxiciastering algorithms.
Given the cluster partition, the optimu matrix unfortunately will be of rank one (a similar
property was pointed out by Xing et al., 2003) Instead we vargnsure that the transformation
minimizes the distance between cluster centers ahddimensional simplex, while maintaining
the simplex structure. We therefore add the following caist (Vi # j) (s — ) A(ps —
w;)T = 2 which prevents the centers of two different clusters frorertapping, and keeps the
A matrix from collapsing to a rank one matrix. Note that the RéfShe constraint just has to
be any positive number (which we choose as 2). Without loggeagrality, under this constraint,
we can take that there exists a decompositioof= 337 (sinceA is positive definite) so that,



Algorithm 1 CPCM
Input: DataX. Sett=0
Generate an initial set of random clustér$)
repeat
Predict cluster membershii” based orX andC(®
Generate&C(*+1) by clusteringZ®) and increment.
until BlurRatio(t) = Blur Ratio(t — 1) + €.

K
SSC=Y" > (XiB—6:)(X;B-0;)". Thusgiven the clustering, the SSC can be minimized
k=14:c(i)=C},
by minimizing theL, distance shown above, which boils down to finding the optithahd hence
A. Thus we can consid#;, € Ac C RX as the center in the prediction space for clustgr

Finding the optimaB R can thus be seen as a two stage optimization procedure. Wniitan op-
timal partitioning of the data using a clustering methodeihwe find the optimalA which reduces
the within cluster variance in the transformed space. Ttvessteps can be iterated till a fixed point.
The basic intuition behind a two step procedure is that thetpevhich cluster together lie around
the corners of a simplex. In CPCM we use a hard clusteringrigtgo and a soft prediction algo-
rithm. The soft prediction from linear regression finds thetyabilities of cluster memberships and
separates the clusters based on features. Hard clusteeingltives the transformed points towards
the simplex corner§ Armed with this insight, we now introduce the CPCM algorithm

3 CPCM: An lterative Clustering Prediction algorithm

The CPCM algorithm alternates between two stages - Clasfemd Prediction. In this paper we
use linear regression as the prediction algorithm, lsmleans as the clustering algorithm. More
formally, the cluster prediction model is given b¥; = X;3 + noise, where@ ¢ RP*XK,
Estimating the cluster memberships of each point by leasares gives a predictiod;. Since

Z; € RX (instead of just a scalar as in the case of a usual regressitingy, we run a regres-
sion on each of thé( columns ofZ (V x K matrix) to generate the predictions. The points are
then clustered in the cluster-prediction space, whichiiseat transformation of the original points:
2 hard cltﬁ[ing algo.c,( )
Figure 1 shows an example dataset consisting of a blurryore§ two line segments. Whek-
means was used for clustering, the clusters produced faileapture the structure of the data; since
k-means tries to minimize the within-cluster variance gatdélands are produced (Figure 1(a)). In
contrast, CPCM finds clusters that better capture the sirei¢Eigure 1(b)). Figure 1(c) shows the
projection of the points in the simplex space, which is adinteansformation of the original data.
Key to CPCM is the fact that it clusters in a simplex space. A dew thesel clusters in a
K — 1-simplexAc. The predicted cluster memberships can then be viewed aslpitities.

: RE — C'. The algorithm is then iterated.

3.1 CPCM computes a (local) minimum of theblur ratio

Recall thatu.) live in the feature space argtl.), are their projections in the simplex space. When
usingk-meansZ; are at the corners of the simplef¢ and soZ; = e, when pointi is in cluster
Cy. Also, we haveX; € R?. As discussed above, CPCM works in two stages:

1. Prediction Stage:Given cluster membershifd, we minimizeRSSp(8) = Zf’:l |1Z; —
X,8|? for B € RP*K . The solutionX;3 € A gives the predicted location of the points
in the cluster probability simplex. When LSR is used with ateicept, the predicted
probabilities automatically sum to one for each point (ktast al., 2001).

*Alternatively, one could combine a hard prediction with & stustering algorithm where the hard regres-
sion drives the transformed points towards the simplexastnsing a hard clustering and hard prediction or
soft clustering and soft prediction would yield a trivialdtk point.



(a) k-means (b) CPCM-LSR (c) The cluster simplex
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(d) Three parallel clouds (e) The cluster simplex  (f) Three concentric circles

Figure 1: An example run is shown from (a)-(c). Data is frono tparallel lines with Gaussian
noise. (a)K-means creates parallel vertical bands to reduce the withster variance, and fails
to cluster “correctly.” Blur ratio for K = 3, BR3 = 0.26 and forK = 2, BRy; = 0.447 (b) In
contrast, CPCM finds the underlying elongated band stracBlur ratio for K = 3, BR3 = 0.148
and forK = 2, BRy = 0.041. Thus,blur ratio is indeed minimized by CPCM for the right number
of clusters. (c) Linear regression transforms the datafigeon to the simplex. Examples using
CPCMRKHSwith a Gaussian kernel are shown from (d)-(f). (d) Three lperiines (e) Projection
on the simplex space shows that CPCM tries to pull the clusteters to the simplex corners. (f)
Three concentric circles.

2. Clustering Stage: Now minimize the objective function for thé-means algorithm,

RSSc(p,c(+)) = Zf\il |X;8 — ueB|*>. Clearly u is only identified for the subspace
spanned by3. Effectively, we are taking the distance orthogonal to@®ubspace as hav-
ing zero distance. To make this clea®y,= 1,3 € R¥. The clustering function then is

basically,c(X;) = argmin ||X;3 — 0x||> where,0, = (X;/|C4)8 = piB.
1<k<K

3.2 Properties of the fixed point

We now state and prove two guarantees about CPCM: it givesudt ighich is invariant to linear
transformations of the original space, and it always coyw®r

Property 1 (Linear Transformation Invariance) The algorithm is invariant to linear transforma-
tions of the data.

Proof The data,X; is only used directly by the linear regression step; clirsgeonly uses the
projectedX;3. Since the linear regression estimatgswhich is invariant to linear transformation,
the whole algorithm is invariant to linear transformatioN®te that if regularization is used, it will



enforce some structure on the initial data. Hence we wik lt8s particular invariance property.
This regularization is necessary in the RKHS setting.

Since the initial cluster labels are chosen at random, thiera multitude of possible ending labels.
Thus we need to know that regardless of the initial state thigealgorithm will converge. We define
the set of possible convergent pointsfas

Definition 1 (Fixed Point) Define the set of sets of point8, as thefixed pointif 7 = CU) =
CU*D | Thus at the fixed point the clusters remain invariant aftercessive iterations.

Property 2 (Existence of Fixed Point) For any initial starting assignment of labels, the algorith
converges to a fixed poing in finite time.

Proof We first show that the algorithm converges to a local minimdrthe blur ratio and then
show that this local minimum corresponds to a fixed point iside above. Since we update only if
theblur ratio decreases, the iterations monotonically decreasblthieatio. Hence, the algorithm
stops when a local minimum of thur ratio is reached. A trivial proof of the second part relies on
there only being a finite number of possible splits into @ust Hence due to the monotonicity, it
must find a local minimum.

These two properties together show that the set of fixed gaitis invariant to linear transforma-
tions inX. Also sincek-means i<)(Np) and LSR isO(Np?), convergence is usually fast.

3.3 Extensions using RKHS

Whenever the clusters are linearly separable, the predistep using linear regression is able to find
the clusters. But, when the original feature space is ne#lily separable, we will need a non-linear
transformation of the features, say by using a Reproducieng&l Hilbert Space (RKHS) (Hastie
et al., 2001) for the prediction step. CPCM works well on thet@typical datasets considered in
spectral clustering literature (Ng et al., 2002). Figuré-fi(show examples using an RKHS, where
CPCM is able to correctly identify the three parallel bandd three concentric circles. Predicting
with an RKHS can be viewed as transforming the data by a n@atimap to a linearly separable
feature space and then applying CPCM in this image space.

4 Related Work

4.1 Unsupervised Learning

One of the most popular clustering techniguesneans, minimizes thielur ratio with the A = 1.
Another, related, approach to clustering is to use a modséd clustering, e.g, Gaussian Mixture
Models (GMM) (Dasgupta, 1999). GMMs with a single covariaatso minimize thélur ratio, as
they cluster in a linearly transformed space.

Another alternative to the prediction step of the blur raffimization would be to reduce to a
generalized eigenvalue problem. Given a partitihriheblur ratio can be considered &3R(A =

r(X©AxET r TSC o) . L
BBT () = ti(gz((7")A§(m)72) = ttr((gTSm%)) whereX () is the matrix withith row asX; — p.(x.),

X (™) is the matrix withith row asX; — u, S, = XTX() ands,, = X("™TX(™) Theg;
are solutions to the generalized eigenvalue protle® = AS,,,3;. The minimumblur ratio is
obtained by taking the minimum eigenvalue, and taking dleotdirections zero (and hengkis
rank 1). To avoid projection to a line, we constrain the mimimto be a projection onté -1
dimensions. Optimizing this ratio is equivalent to CPCMhnliinear Discriminant Analysis (LDA,
with K classes) as the prediction step (Fukunaga, 1990, Hastie 20@1).

Recently we have been made aware of similar work done by Diddg-&(2007) who introduce LDA-
km. This is an extension of the adaptive dimension reductiethodology (Ding et al., 2002), where
they introduce ADR-EM. The ADR framework aims to do subspelestering and uses cluster
membership to define -1 dim space, but it still uses projections based on Eudlidistances.
LDA-km, on the other hand, minimizes a criterion relatedlar-ratio, and is similar to the CPCM-
LDA suggested above. LDA and multiple regression are cjosghted techniques; See Hastie et al.



(1994) and Hastie et al. (1995) for a detailed discussiorhersimilarity and differences between
the two. Key advantage of CPCM is that we can extend it to diffeprediction techniques e.g.to
RKHS above, and to stepwise in next section. We compare LBACPCM in section 5.

Almost none of the traditional clustering and dimensiagaleduction methods are invariant to
linear transformations of the data (Frey & Jojic, 2003; Ku&®rlin, 2005). For examples-means
requires a distance function which can be changed drdgtlmatoing a linear transformation of the
features. Different transformations lead to differentstéuis. One way to obtain invariant clusters
is to use a clustering criterion which itself is invarianthig is the approach taken by Friedman
and Rubin (1967) where they use the Mahalanobis distanceciftulark-means (Charalampidis,
2005) which is rotation invariant also utilizes the Mahalbis distance in its criteria. Other related
work includes Fitzgibbon and Zisserman (2002), Kumar arith@005), and Frey and Jojic (2003).
Though invariant, none of these procedures learn metrics.

4.2 Distance Metric Learning

Several supervised learning methods, including the Malolizs Metric for Clustering (MMC, Xing
etal., 2003) and Pseudo-metric Online Learning AlgoritR@ILA, Shalev-Shwartz et al., 2004) use
convex optimization to compute optimal transformationshef original feature space. MMC finds
the transformation which maximizes the sum of squared migts between differently labeled in-
puts, while maintaining an upper bound on the sum of distabeéween similarly labeled inputs.
Weinberger et al. (2006) extend this approach to k-Nearegjthor classification. A related ap-
proach was taken by Schultz and Joachims (2004) who emplativeecomparisons to generate
a distance metric. Bar-Hillel et al. (2005) also learn aremproduct distance using equivalence
constraints. Bilenko et al. (2004) integrate the learnifithe distance metric and clustering of the
data. The CPCM method shares some similarity in spirit tostiygervised methods, but is purely
unsupervised; it uses a different optimality criterion.eTitur ratio could, of course, be optimized
by methods similar to those used in the supervised setting.

5 Higher Dimensional Problems

5.1 Simulated datasets

In this example we compare CPCM, LDA-km and Spectral clisterCases where these perform
better thark-means have already been shown. We take the the three peli@li@ example of Figure
1(d) and add 3 dimensions of high-variance, highly coregl@aussian noise. Since both LDA-km
and CPCM try to cluster in & -1 dimension, adding these 3 dimensions confuses the #igmi
We now add 50 dimensions of Gaussian noise, which ensureSpleatral clustering fails (though
correlated noise suffices too). In our experience, Spegtnadlly performs poorly in the presence
of high-dimensional noise. We run a simple modification of0BRLSR where during regression
we use a step-wise procedure. This modification underlimestrength of the CPCM framework.
By using this, the algorithm is now able to identify the cetrelusters. The results when Spectral,
LDA-km and CPCM-LSRstep were run are shown in Figure 2. Aseetgd, both spectr&land
LDA-km produce poor results in this example. CPCM-LSRsteptle other hand identifies the
clusters correctly. Without the high-dimensional noidetheee algorithms can identify the clusters
correctly.

5.2 UCI machine learning datasets

In this example, we run several different clustering althonis along with CPCM and LDA-km. We
show different criteria to measure and compare the quafithe clusters produced. To compute
these criteria we use the given class labels. Table 2(a)stiwwvariation of informatiorcriteria of
Meila (2005). A lower value is an indicator of better clusgeiality. Here CPCM and spectral seem
to perform quite well. It is interesting to note that PCA+means seems to perform slightly worse
thank-means. The rand index was also used for comparison (tal)g&{d there also CPCM does
better than the other algorithms. Classification errorgifire clusters produced was also calculated
and all algorithms perform fairly average, which is not ssipg as this is unsupervised learning.

2Theker nl ab package (foR) implementation of spectral clustering was used.



(a) Spectral (b) LDA-km (c) CPCM-LSRstep

Figure 2: Comparison of Spectral, LDA-km and CPCM on a sitadalataset.

Table 1: Comparison of different algorithms on the UCI datas

CPCM | CPCM | Spectral| k-means| k-means| LDA
-LSR | -RKHS + PCA -km
Glass 0.383 0.371 0.27 0.316 0.37 0.397
lonosphere | 0.205 0.202 0.215 0.198 0.205 | 0.203
Pima Indian| 0.189 0.167 0.136 0.17 0.181 0.2

Sonar 0.236 0.231 0.147 0.257 0.229 | 0.229
Vehicle 0.323 0.318 0.285 0.325 0.372 | 0.339
Vowel 0.429 0.465 0.432 0.426 0.466 0.49

(a) Variation of information

CPCM | CPCM | Spectral| k-means| k-means| LDA
-LSR | - RKHS + PCA -km
Glass 0.68 0.73 0.627 0.681 0.67 0.665
lonosphere | 0.571 0.501 0.538 0.589 0.573 | 0.577
Pima Indian| 0.516 0.521 0.547 0.551 0.572 | 0.502

Sonar 0.508 0.499 0.498 0.503 0.499 | 0.499
Vehicle 0.674 0.568 0.564 0.651 0.648 | 0.669
Vowel 0.861 0.842 0.709 0.859 0.85 0.852

(b) Rand index

5.3 Gene expressions

Alizadeh et al. (2000) characterize the gene expressioradBnalignancies which cause diffuse
large B-cell lymphoma (DLBCL). They study 96 samples of nafmnd malignant lymphocytes
with 4096 gene expressions each. Using domain expertis¢issue samples were classified into 9
categories like DLBCL, Germinal centre B and so on. We ainetyeate thes& = 9 categories
using clustering. The distribution of the classes is verguam (6, 2,2, 10,6, 6,9, 4, 11) making it

a tough clustering problem (refer to Figure 1 in (Alizadelaket 2000)). We take the firgk — 1
PCA components as our features and use them for clustering @He, 2004). For comparisons,
k-means and spectral clustering were used in addition to GIRBMS. 100 runs of each algorithm
were run and the average Rand indices are reported in taBllee2clustering from CPCM is much
better thark-means or spectral in terms of the Rand index.

Table 2: Rand index for different algorithms (averaged @ runs) on the Alizadeh et. al. data
k-means| Spectral] CPCM-RKHS
Randindex| 0.748 0.777 0.845
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6 Discussion

Learning metrics is critical when features come on veryedéht scales, and when many features
are irrelevant or highly correlated. We have shown that CREable to learn transformations of the
data that give good clusters in the presence of high dimeabkimise, for cases that spectral clus-
tering and LDA-km produce poor results. A big advantage effitoposed method is the flexibility
of substituting different prediction algorithms, eg sigse regression in the example effectively
handles correlated noise.

One attractive feature of the transformations that CPCMnkeés that it is invariant under non-
singular linear transformations of the data. Transforntiregoriginal points just results in a com-
pensatory transformation of the distance metric; the ehgstemain unchangédClearly gaining
this invariance must come at a price. Since CPCM consideraahmicher space of clusters than
standardk-means (or, equivalently, has more free parameters totfitpuld end up fitting more
noise thank-means does. Viewed differently, if the clusters are oymmiiag, it could be the case
that k-means does better given the correct metric. Our prelirgieanpirical studies have shown
that in such cases where the linear regression step is rmt@bihd separation, the regression does
not warp the data very much, so CPCM returns similar resalisrheans. In short, CPCM works
well if there are better separated clusters@mespace generated from a linear combination of the
original features.
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