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Abstract

Distance-based learning methods, like clustering and SVMs, are dependent on
good distance metrics. This paper doesunsupervisedmetric learning in the context
of clustering. We seek transformations of data which givecleanand well separated
clusters wherecleanclusters are those for which membership can be accurately
predicted. The transformation (hence distance metric) is obtained by minimizing
theblur ratio, which is defined as the ratio of the within cluster variance divided
by the total data variance in the transformed space. For minimization we propose
an iterative procedure,Clustering Predictions of Cluster Membership(CPCM).
CPCM alternately (a) predicts cluster memberships (e.g., using linear regression)
and (b) clusters these predictions (e.g., usingk-means). With linear regression and
k-means, this algorithm is guaranteed to converge to a fixed point. The resulting
clusters are invariant to linear transformations of original features, and tend to
eliminate noise features by driving their weights to zero.

1 Introduction

In data mining one often wants to findgoodclusters in a set of data using e.g.k-means, agglomera-
tive or spectral clustering methods (Jain et al., 1999; Ng etal., 2002). Though it is clear that clusters
depend on the distance metric, what constitutes agoodcluster is a difficult question, and depends on
the goal of the clustering. Many probabilistic, information theoretic, and graph theoretic measures
have been proposed to capture the quality of clustering (Kannan et al., 2000). Most of these criteria
try to measure the similarity between points in a cluster, and thus depend on some distance metric.
In a supervised setting, such as for classification problems, researchers have developed criteria for
learning the distance metrics, either when all points are labeled with clusters (Shalev-Shwartz et al.,
2004; Shental et al., 2002), or when “side information” about pairs of points either being, or not
being in the same cluster (Xing et al., 2003) are available.

We propose a method of learning metrics in an unsupervised setting. A good distance metric would
lead to tight and well-separated clusters in some projectedspace. We quantify this by introducing
a new criterion, the ratio of the average distance of points to their nearest cluster centers to the
average distance of the data points to their overall mean in the transformed space. For a linear
transformationA of the data, we call our criterion theblur ratio BR(A). Our goal then is to find
theA which minimizes thisblur ratio. The criterion resembles the one thatLinear Discriminant
Analysis(LDA) minimizes, except that we are doing unsupervised learning, while LDA assumes that
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labels are known. In effect, we are learning a distance metric such that the transformation obtained
projects the data to a subspace where the clusters are tight.Minimization of theblur ratio handles
data with high-dimensional noise features by tending to drive their weights to zero.

For the minimization we propose an iterative algorithm,Clustering Predictions of Cluster Member-
ship (CPCM), which first predicts cluster membership, and then defines new clusters by clustering
the predictions of cluster membership. In CPCM we combine a hard clustering algorithm with a soft
prediction algorithm (i.e. the prediction step predicts cluster probabilities and not cluster member-
ships). The intuition behind using predictability is that if we generate clusters using a set of features,
we should also be able to predict the membership of the clusters using the same features. By using
predictions of cluster membership, we can take advantage ofsupervised learning methods to bet-
ter solve unsupervised and semi-supervised problems (Chapelle et al., 2003). This paper explains
the CPCM algorithm in detail and characterizes some of its properties for the case where linear re-
gression is used for prediction, including showing that it gives clusters which are invariant to linear
transformations of the data. CPCM can be easily extended to different prediction and clustering
techniques; we discuss the use of Reproducing Kernel Hilbert Spaces (RKHS) for prediction in this
context, and show that CPCM gives superior perfomance to similar metric learning and unsuper-
vised methods when there are many spurious features. CPCM reduces the contribution of irrelevant
features, greatly improving cluster quality.

2 Optimal Distance Metric and Blur Ratio

Consider aN × p dimensional matrixX whereN is the number of points andp is the number of
features. We will useXi to denote theith row andX·i to denote theith column inX. This makes the
feature vector into a row vector. We will use row vectors throughout. DefineC = {C1, · · · , CK} to
be the set of clusters. Let4C be the simplex over theK dimensions (the subspace ofK dimensions
such that every point looks like a probability, with components lying in (0,1) and summing to 1) with
ek ∈ 4C denoting a unit direction. Denoting the clustering function by c, we have the following
map

X
k-means
−→ c( ) : Rp → C (1)

Usingc(), we define the matrixZ such thatZi = ek:c(Xi)=Ck
. Note thatZi is aK dimensional row

vector on the simplex4C. 4C can be regarded as a probability simplex for the cluster membership
with Zik equaling the probability of pointi being in clusterk. Defineµk ∈ Rp as the center in the
feature space for clusterCk.

Our goal is to find the linear transformation of the dataX such that the distance metricd(x, y) =√
(x − y)A(x − y)T gives the lowestblur ratio. We will build up theblur ratio by a sums of

squares decomposition: Within cluster variance, SSC ≡

K∑

k=1

∑

i:c(Xi)=Ck

(Xi − µk)A(Xi − µk)T

and, Total variance, SST ≡

N∑

i=1

(Xi−µ)A(Xi−µ)T . Hereµ = X̄ andA is a symmetric positive

semi-definite matrix. We can then define theblur ratio and the optimization problem as

min
A,c

BR(A, c) ≡
SSC

SST

Following the argument fork-means type algorithms (Peng & Xia, 2005), it is clear that optimizing
theblur ratio is NP-hard. Thus we rely on the existence of good approximateclustering algorithms.
Given the cluster partition, the optimumA matrix unfortunately will be of rank one (a similar
property was pointed out by Xing et al., 2003) Instead we wantto ensure that the transformation
minimizes the distance between cluster centers and aK-dimensional simplex, while maintaining
the simplex structure. We therefore add the following constraint (∀i 6= j) (µi − µj)A(µi −
µj)

T = 2 which prevents the centers of two different clusters from overlapping, and keeps the
A matrix from collapsing to a rank one matrix. Note that the RHSof the constraint just has to
be any positive number (which we choose as 2). Without loss ofgenerality, under this constraint,
we can take that there exists a decomposition ofA = ββT (sinceA is positive definite) so that,
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Algorithm 1 CPCM
Input: DataX. Sett=0
Generate an initial set of random clustersC(0)

repeat
Predict cluster membershipZ(t)

i based onX andC
(t)

GenerateC(t+1) by clusterinĝZ(t) and incrementt.
until BlurRatio(t) = BlurRatio(t − 1) + ε.

SSC =

K∑

k=1

∑

i:c(i)=Ck

(Xiβ−θk)(Xiβ−θk)
T . Thus given the clustering, the SSC can be minimized

by minimizing theL2 distance shown above, which boils down to finding the optimalβ and hence
A. Thus we can considerθk ∈ 4C ⊂ RK as the center in the prediction space for clusterCk.

Finding the optimalBR can thus be seen as a two stage optimization procedure. We first find an op-
timal partitioning of the data using a clustering method. Then, we find the optimalA which reduces
the within cluster variance in the transformed space. Thesetwo steps can be iterated till a fixed point.
The basic intuition behind a two step procedure is that the points which cluster together lie around
the corners of a simplex. In CPCM we use a hard clustering algorithm and a soft prediction algo-
rithm. The soft prediction from linear regression finds the probabilities of cluster memberships and
separates the clusters based on features. Hard clustering then drives the transformed points towards
the simplex corners.1 Armed with this insight, we now introduce the CPCM algorithm.

3 CPCM: An Iterative Clustering Prediction algorithm

The CPCM algorithm alternates between two stages - Clustering and Prediction. In this paper we
use linear regression as the prediction algorithm, andk-means as the clustering algorithm. More
formally, the cluster prediction model is given by:Zi = Xiβ + noise, whereβ ∈ Rp×K .
Estimating the cluster memberships of each point by least squares gives a prediction̂Zi. Since
Ẑi ∈ RK (instead of just a scalar as in the case of a usual regression setting), we run a regres-
sion on each of theK columns ofZ (N × K matrix) to generate the predictions. The points are
then clustered in the cluster-prediction space, which is a linear transformation of the original points:

Ẑ
hard clustering algo.

−→ c′( ) : RK → C′ . The algorithm is then iterated.

Figure 1 shows an example dataset consisting of a blurry version of two line segments. Whenk-
means was used for clustering, the clusters produced failedto capture the structure of the data; since
k-means tries to minimize the within-cluster variance parallel bands are produced (Figure 1(a)). In
contrast, CPCM finds clusters that better capture the structure (Figure 1(b)). Figure 1(c) shows the
projection of the points in the simplex space, which is a linear transformation of the original data.
Key to CPCM is the fact that it clusters in a simplex space. We can view theseK clusters in a
K − 1-simplex4C. The predicted cluster memberships can then be viewed as probabilities.

3.1 CPCM computes a (local) minimum of theblur ratio

Recall thatµ(·) live in the feature space andθ(·), are their projections in the simplex space. When
usingk-means,Zi are at the corners of the simplex,4C and soZi = ek when pointi is in cluster
Ck. Also, we haveXi ∈ Rp. As discussed above, CPCM works in two stages:

1. Prediction Stage:Given cluster membershipsZi, we minimizeRSSP (β) =
∑N

i=1 ||Zi−

Xiβ||
2 for β ∈ Rp×K . The solutionXiβ̂ ∈ 4C gives the predicted location of the points

in the cluster probability simplex. When LSR is used with an intercept, the predicted
probabilities automatically sum to one for each point (Hastie et al., 2001).

1Alternatively, one could combine a hard prediction with a soft clustering algorithm where the hard regres-
sion drives the transformed points towards the simplex corners. Using a hard clustering and hard prediction or
soft clustering and soft prediction would yield a trivial fixed point.
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Figure 1: An example run is shown from (a)-(c). Data is from two parallel lines with Gaussian
noise. (a)K-means creates parallel vertical bands to reduce the withincluster variance, and fails
to cluster “correctly.” Blur ratio for K = 3, BR3 = 0.26 and forK = 2, BR2 = 0.447 (b) In
contrast, CPCM finds the underlying elongated band structure. Blur ratio for K = 3, BR3 = 0.148
and forK = 2, BR2 = 0.041. Thus,blur ratio is indeed minimized by CPCM for the right number
of clusters. (c) Linear regression transforms the data linearly on to the simplex. Examples using
CPCM-RKHSwith a Gaussian kernel are shown from (d)-(f). (d) Three parallel lines (e) Projection
on the simplex space shows that CPCM tries to pull the clustercenters to the simplex corners. (f)
Three concentric circles.

2. Clustering Stage: Now minimize the objective function for thek-means algorithm,
RSSC(µ, c(·)) =

∑N

i=1 ||Xiβ − µkβ||
2. Clearlyµk is only identified for the subspace

spanned byβ. Effectively, we are taking the distance orthogonal to theβ subspace as hav-
ing zero distance. To make this clearer,θk ≡ µkβ ∈ RK . The clustering function then is
basically,c(Xi) = argmin

1≤k≤K

||Xiβ − θk||
2 where,θk ≡ (Xi/|Ck|)β = µkβ.

3.2 Properties of the fixed point

We now state and prove two guarantees about CPCM: it gives a result which is invariant to linear
transformations of the original space, and it always converges.

Property 1 (Linear Transformation Invariance) The algorithm is invariant to linear transforma-
tions of the data.

Proof The data,Xi is only used directly by the linear regression step; clustering only uses the
projectedXiβ. Since the linear regression estimates aβ which is invariant to linear transformation,
the whole algorithm is invariant to linear transformations. Note that if regularization is used, it will
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enforce some structure on the initial data. Hence we will lose this particular invariance property.
This regularization is necessary in the RKHS setting.

Since the initial cluster labels are chosen at random, thereare a multitude of possible ending labels.
Thus we need to know that regardless of the initial state, that the algorithm will converge. We define
the set of possible convergent points asF :

Definition 1 (Fixed Point) Define the set of sets of points,F , as thefixed point if F = C(j) =
C(j+1). Thus at the fixed point the clusters remain invariant after successive iterations.

Property 2 (Existence of Fixed Point) For any initial starting assignment of labels, the algorithm
converges to a fixed point,F in finite time.

Proof We first show that the algorithm converges to a local minimum of the blur ratio and then
show that this local minimum corresponds to a fixed point as defined above. Since we update only if
theblur ratio decreases, the iterations monotonically decrease theblur ratio. Hence, the algorithm
stops when a local minimum of theblur ratio is reached. A trivial proof of the second part relies on
there only being a finite number of possible splits into clusters. Hence due to the monotonicity, it
must find a local minimum.

These two properties together show that the set of fixed points,F , is invariant to linear transforma-
tions inX. Also sincek-means isO(Np) and LSR isO(Np2), convergence is usually fast.

3.3 Extensions using RKHS

Whenever the clusters are linearly separable, the prediction step using linear regression is able to find
the clusters. But, when the original feature space is not linearly separable, we will need a non-linear
transformation of the features, say by using a Reproducing Kernel Hilbert Space (RKHS) (Hastie
et al., 2001) for the prediction step. CPCM works well on the prototypical datasets considered in
spectral clustering literature (Ng et al., 2002). Figure 1(d-f) show examples using an RKHS, where
CPCM is able to correctly identify the three parallel bands and three concentric circles. Predicting
with an RKHS can be viewed as transforming the data by a non-linear map to a linearly separable
feature space and then applying CPCM in this image space.

4 Related Work

4.1 Unsupervised Learning

One of the most popular clustering techniques,k-means, minimizes theblur ratio with theA = I.
Another, related, approach to clustering is to use a model-based clustering, e.g, Gaussian Mixture
Models (GMM) (Dasgupta, 1999). GMMs with a single covariance also minimize theblur ratio, as
they cluster in a linearly transformed space.

Another alternative to the prediction step of the blur ratiooptimization would be to reduce to a
generalized eigenvalue problem. Given a partitionC, theblur ratio can be considered asBR(A =

ββT , c()) ≡ tr(X(c)
AX

(c)T )
tr(X(m)AX(m)T )

= tr(βT
Scβ)

tr(βT Smβ) whereX(c) is the matrix withith row asXi − µc(Xi),

X
(m) is the matrix withith row asXi − µ, Sc = X

(c)T
X

(c) andSm = X
(m)T

X
(m). Theβi

are solutions to the generalized eigenvalue problemScβi = λSmβi. The minimumblur ratio is
obtained by taking the minimum eigenvalue, and taking all other directions zero (and henceβ is
rank 1). To avoid projection to a line, we constrain the minimum to be a projection ontoK-1
dimensions. Optimizing this ratio is equivalent to CPCM with Linear Discriminant Analysis (LDA,
with K classes) as the prediction step (Fukunaga, 1990, Hastie et al., 2001).

Recently we have been made aware of similar work done by Ding and Li (2007) who introduce LDA-
km. This is an extension of the adaptive dimension reductionmethodology (Ding et al., 2002), where
they introduce ADR-EM. The ADR framework aims to do subspaceclustering and uses cluster
membership to define aK-1 dim space, but it still uses projections based on Euclidean distances.
LDA-km, on the other hand, minimizes a criterion related toblur-ratio, and is similar to the CPCM-
LDA suggested above. LDA and multiple regression are closely related techniques; See Hastie et al.
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(1994) and Hastie et al. (1995) for a detailed discussion on the similarity and differences between
the two. Key advantage of CPCM is that we can extend it to different prediction techniques e.g.to
RKHS above, and to stepwise in next section. We compare LDA-km to CPCM in section 5.

Almost none of the traditional clustering and dimensionality reduction methods are invariant to
linear transformations of the data (Frey & Jojic, 2003; Kumar & Orlin, 2005). For example,k-means
requires a distance function which can be changed drastically by doing a linear transformation of the
features. Different transformations lead to different clusters. One way to obtain invariant clusters
is to use a clustering criterion which itself is invariant. This is the approach taken by Friedman
and Rubin (1967) where they use the Mahalanobis distance. The circulark-means (Charalampidis,
2005) which is rotation invariant also utilizes the Mahalanobis distance in its criteria. Other related
work includes Fitzgibbon and Zisserman (2002), Kumar and Orlin (2005), and Frey and Jojic (2003).
Though invariant, none of these procedures learn metrics.

4.2 Distance Metric Learning

Several supervised learning methods, including the Mahalanobis Metric for Clustering (MMC, Xing
et al., 2003) and Pseudo-metric Online Learning Algorithm (POLA, Shalev-Shwartz et al., 2004) use
convex optimization to compute optimal transformations ofthe original feature space. MMC finds
the transformation which maximizes the sum of squared distances between differently labeled in-
puts, while maintaining an upper bound on the sum of distances between similarly labeled inputs.
Weinberger et al. (2006) extend this approach to k-Nearest Neighbor classification. A related ap-
proach was taken by Schultz and Joachims (2004) who employ relative comparisons to generate
a distance metric. Bar-Hillel et al. (2005) also learn an inner product distance using equivalence
constraints. Bilenko et al. (2004) integrate the learning of the distance metric and clustering of the
data. The CPCM method shares some similarity in spirit to thesupervised methods, but is purely
unsupervised; it uses a different optimality criterion. The blur ratio could, of course, be optimized
by methods similar to those used in the supervised setting.

5 Higher Dimensional Problems

5.1 Simulated datasets

In this example we compare CPCM, LDA-km and Spectral clustering. Cases where these perform
better thank-means have already been shown. We take the the three parallel cloud example of Figure
1(d) and add 3 dimensions of high-variance, highly correlated Gaussian noise. Since both LDA-km
and CPCM try to cluster in aK-1 dimension, adding these 3 dimensions confuses the algorithms.
We now add 50 dimensions of Gaussian noise, which ensures that Spectral clustering fails (though
correlated noise suffices too). In our experience, Spectralusually performs poorly in the presence
of high-dimensional noise. We run a simple modification of CPCM-LSR where during regression
we use a step-wise procedure. This modification underlines the strength of the CPCM framework.
By using this, the algorithm is now able to identify the correct clusters. The results when Spectral,
LDA-km and CPCM-LSRstep were run are shown in Figure 2. As expected, both spectral2 and
LDA-km produce poor results in this example. CPCM-LSRstep on the other hand identifies the
clusters correctly. Without the high-dimensional noise, all three algorithms can identify the clusters
correctly.

5.2 UCI machine learning datasets

In this example, we run several different clustering algorithms along with CPCM and LDA-km. We
show different criteria to measure and compare the quality of the clusters produced. To compute
these criteria we use the given class labels. Table 2(a) shows thevariation of informationcriteria of
Meila (2005). A lower value is an indicator of better clusterquality. Here CPCM and spectral seem
to perform quite well. It is interesting to note that PCA +k-means seems to perform slightly worse
thank-means. The rand index was also used for comparison (table 2(b)) and there also CPCM does
better than the other algorithms. Classification error using the clusters produced was also calculated
and all algorithms perform fairly average, which is not suprising as this is unsupervised learning.

2Thekernlab package (forR) implementation of spectral clustering was used.
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Figure 2: Comparison of Spectral, LDA-km and CPCM on a simulated dataset.

Table 1: Comparison of different algorithms on the UCI dataset

CPCM CPCM Spectral k-means k-means LDA
- LSR - RKHS + PCA -km

Glass 0.383 0.371 0.27 0.316 0.37 0.397
Ionosphere 0.205 0.202 0.215 0.198 0.205 0.203
Pima Indian 0.189 0.167 0.136 0.17 0.181 0.2
Sonar 0.236 0.231 0.147 0.257 0.229 0.229
Vehicle 0.323 0.318 0.285 0.325 0.372 0.339
Vowel 0.429 0.465 0.432 0.426 0.466 0.49

(a) Variation of information

CPCM CPCM Spectral k-means k-means LDA
- LSR - RKHS + PCA -km

Glass 0.68 0.73 0.627 0.681 0.67 0.665
Ionosphere 0.571 0.501 0.538 0.589 0.573 0.577
Pima Indian 0.516 0.521 0.547 0.551 0.572 0.502
Sonar 0.508 0.499 0.498 0.503 0.499 0.499
Vehicle 0.674 0.568 0.564 0.651 0.648 0.669
Vowel 0.861 0.842 0.709 0.859 0.85 0.852

(b) Rand index

5.3 Gene expressions

Alizadeh et al. (2000) characterize the gene expression of B-cell malignancies which cause diffuse
large B-cell lymphoma (DLBCL). They study 96 samples of normal and malignant lymphocytes
with 4096 gene expressions each. Using domain expertise, the tissue samples were classified into 9
categories like DLBCL, Germinal centre B and so on. We aim to recreate theseK = 9 categories
using clustering. The distribution of the classes is very uneven (46, 2, 2, 10, 6, 6, 9, 4, 11) making it
a tough clustering problem (refer to Figure 1 in (Alizadeh etal., 2000)). We take the firstK − 1
PCA components as our features and use them for clustering (Ding & He, 2004). For comparisons,
k-means and spectral clustering were used in addition to CPCM-RKHS. 100 runs of each algorithm
were run and the average Rand indices are reported in table 2.The clustering from CPCM is much
better thank-means or spectral in terms of the Rand index.

Table 2: Rand index for different algorithms (averaged over100 runs) on the Alizadeh et. al. data
k-means Spectral CPCM-RKHS

Rand index 0.748 0.777 0.845
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6 Discussion

Learning metrics is critical when features come on very different scales, and when many features
are irrelevant or highly correlated. We have shown that CPCMis able to learn transformations of the
data that give good clusters in the presence of high dimensional noise, for cases that spectral clus-
tering and LDA-km produce poor results. A big advantage of the proposed method is the flexibility
of substituting different prediction algorithms, eg step-wise regression in the example effectively
handles correlated noise.

One attractive feature of the transformations that CPCM learns is that it is invariant under non-
singular linear transformations of the data. Transformingthe original points just results in a com-
pensatory transformation of the distance metric; the clusters remain unchanged.3 Clearly gaining
this invariance must come at a price. Since CPCM considers a much richer space of clusters than
standardk-means (or, equivalently, has more free parameters to fit), it could end up fitting more
noise thank-means does. Viewed differently, if the clusters are overlapping, it could be the case
that k-means does better given the correct metric. Our preliminary empirical studies have shown
that in such cases where the linear regression step is not able to find separation, the regression does
not warp the data very much, so CPCM returns similar results to k-means. In short, CPCM works
well if there are better separated clusters insomespace generated from a linear combination of the
original features.
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