Use of a Single Multiplexed CMOS Oscillator as Direct Frequency Read-Out for an Array of Eight AlN Contour-Mode NEMS Resonant Sensors
Penn collection
Degree type
Discipline
Subject
Engineering Science and Materials
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract
This paper reports on the first demonstration of a single multiplexed CMOS oscillator circuit employed as direct frequency readout for an array of 8 nanoscaled aluminum nitride Contour-Mode Resonant Sensors (CMR-S). In this first prototype 8 thin-film (250 nm) AlN CMR-S operating at 186 MHz were fabricated on the same chip and simultaneously wire-bonded to a Pierce-like oscillator circuit (fabricated in the ON Semiconductor 0.5 µm CMOS process) by means of 8 CMOS transmission gates addressed via a 3 bit on-chip decoder. The 8 CMR-S were simultaneously exposed to different concentrations of methanol (0.1–1% of the saturated vapor pressure) and their response was monitored in a time-multiplexed mode. Frequency shifts of 300 Hz corresponding to changes of mass per unit area of 7 ag/µm2 were experimentally detected. Values of phase noise derived Allan deviation as low as 0.9 Hz were measured. Such Allan deviation translates in an estimated limit of detection of 21 zg/µm2.