Resilient Parameter-Invariant Control With Application to Vehicle Cruise Control
Penn collection
Degree type
Discipline
Subject
Computer Engineering
Computer Sciences
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract
This work addresses the general problem of resilient control of unknown stochastic linear time-invariant (LTI) systems in the presence of sensor attacks. Motivated by a vehicle cruise control application, this work considers a first order system with multiple measurements, of which a bounded subset may be corrupted. A frequency-domain-designed resilient parameter-invariant controller is introduced that simultaneously minimizes the effect of corrupted sensors, while maintaining a desired closed-loop performance, invariant to unknown model parameters. Simulated results illustrate that the resilient parameter-invariant controller is capable of stabilizing unknown state disturbances and can perform state trajectory tracking.