Pappas, George J

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 10 of 121
  • Publication
    From Discrete to Continuous and Back: Abstractions and Mesoscopic Phenomena in Cells
    (2008-05-28) Halász, Ádám M; Pappas, George J; Julius, A. Agung; Kumar, R. Vijay
    We discuss the interplay between stochasticity and multistability in bio-molecular networks. The resulting cell-level stochastic behavior reflects the fundamentally discrete and random nature of the underlying molecular processes. These ideas are illustrated on the well studied example of the lac operon. We first describe the switching behavior predicted by a differential-equation based model and then show how cell-level stochastic behavior emerges. Finally we point out that the observed macroscopic behavior may not be enough to determine both the dynamic and stochastic parameters.
  • Publication
    Hybrid Control for Visibility-Based Pursuit-Evasion Games
    (2004-09-28) Isler, Volkan; Daniilidis, Kostas; Belta, Calin; Pappas, George J
    Pursuit-evasion games in complex environments have a rich but disconnected history. Continuous or differential pursuit-evasion games focus on optimal control methods, and rely on very intense computations in order to provide locally optimal controls. Discrete pursuit-evasion games on graphs are algorithmically much more appealing, but completely ignore the physical dynamics of the players, resulting in possibly infeasible motions. In this paper, we present a provable and algorithmically feasible solution for visibility-based pursuit-evasion games in simply-connected environments, for players with dynamic constraints. This is achieved by combining two recent but distant results.
  • Publication
    Compositional Abstractions of Hybrid Control Systems
    (2001-12-04) Tabuada, Paulo; Pappas, George J; Lima, Pedro
    Abstraction is a natural way to hierarchically decompose the analysis and design of hybrid systems. Given a hybrid control system and some desired properties, one extracts an abstracted system while preserving the properties of interest. Abstractions of purely discrete systems is a mature area, whereas abstractions of continuous systems is a recent activity. In this paper we present a framework for abstraction that applies to abstract control systems capturing discrete, continuous, and hybrid systems. Parallel composition is presented in a categorical framework and an algorithm is proposed to construct abstractions of hybrid control systems. Finally, we show that our abstractions of hybrid systems are compositional.
  • Publication
    Temporal Logic Motion Planning for Mobile Robots
    (2005-04-01) Fainekos, Geogios E; Kress-Gazit, Hadas; Pappas, George J
    In this paper, we consider the problem of robot motion planning in order to satisfy formulas expressible in temporal logics. Temporal logics naturally express traditional robot specifications such as reaching a goal or avoiding an obstacle, but also more sophisticated specifications such as sequencing, coverage, or temporal ordering of different tasks. In order to provide computational solutions to this problem, we first construct discrete abstractions of robot motion based on some environmental decomposition. We then generate discrete plans satisfying the temporal logic formula using powerful model checking tools, and finally translate the discrete plans to continuous trajectories using hybrid control. Critical to our approach is providing formal guarantees ensuring that if the discrete plan satisfies the temporal logic formula, then the continuous motion also satisfies the exact same formula.
  • Publication
    Finite state abstraction of a stochastic model of the lactose regulation system of Escherichia coli
    (2006-12-15) Julius, Agung; Kumar, R. Vijay; Halász, Ádám; Pappas, George J
    This paper focuses on the lactose regulation system in Escherichia coli bacteria, one of the most extensively studied examples of positive feedback in a naturally occurring gene network. State-of-the-art nonlinear dynamical system models predict a bi-stability phenomenon that is confirmed in experiments. However, such deterministic models fail to explain experimental observations of spontaneous transition between the two stable states in the system and the simultaneous occurrence of both steady states in a population of cells. In this paper, we propose a stochastic model that explains this phenomenon. Furthermore, we also extract a coarser two-state continuous-time Markov chain as a higher level abstraction of this model, and show that macroscopic properties are retained in the abstraction.
  • Publication
    Towards Synthesis of Platform-Aware Attack-Resilient Control Systems: Extended Abstract
    (2013-04-09) Pajic, Miroslav; Bezzo, Nicola; Weimer, James; Alur, Rajeev; Mangharam, Rahul; Michael, Nathan; Pappas, George J; Sokolsky, Oleg; Tabuada, Paulo; Weirich, Stephanie; Lee, Insup
  • Publication
    Estimation of Blood Oxygen Content Using Context-Aware Filtering
    (2016-04-01) Ivanov, Radoslav; Atanasov, Nikolay; Weimer, James; Simpao, Allan F; Rehman, Mohamed A; Pappas, George; Lee, Insup; Pajic, Miroslav
    In this paper we address the problem of estimating the blood oxygen concentration in children during surgery.Currently, the oxygen content can only be measured through invasive means such as drawing blood from the patient. In this work, we attempt to perform estimation by only using other non-invasive measurements (e.g., fraction of oxygen in inspired air, volume of inspired air) collected during surgery. Although models mapping these measurements to blood oxygen content contain multiple parameters that vary widely across patients, the non-invasive measurements can be used to provide binary information about whether the oxygen concentration is rising or dropping. This information can then be incorporated in a context-aware filter that is used to combine regular continuous measurements with discrete detection events in order to improve estimation. We evaluate the filter using real-patient data collected over the last decade at the Children’s Hospital of Philadelphia and show that it is a promising approach for the estimation of unobservable physiological variables.
  • Publication
    Abstractions of Constrained Linear Systems
    (2003-06-04) Tanner, Herbert G; Pappas, George J
    Simulation relations are powerful abstraction techniques in computer science that reduce the complexity of analysis and design of labeled transition systems. In this paper, we define and characterize simulation relations for discrete-time linear systems in the presence of state and input constraints. Given a discrete-time linear system and the associated constraints, we consider a control-abstract embedding into a transition system. We then establish necessary and sufficient conditions for one constrained linear system to simulate the transitions of the other. Checking the simulation conditions is formulated as a linear programming problem which can be efficiently solved for systems of large dimensions. We provide an example where our approach is applied to the hybrid model of the Electronic Throttle Control (ETC) System.
  • Publication
    Cooperative Air and Ground Survaillance
    (2006-09-01) Grocholsky, Ben; Kumar, Vijay; Keller, James; Pappas, George J
    Unmanned aerial vehicles (UAVs) can be used to cover large areas searching for targets. However, sensors on UAVs are typically limited in their accuracy of localization of targets on the ground. On the other hand, unmanned ground vehicles (UGVs) can be deployed to accurately locate ground targets, but they have the disadvantage of not being able to move rapidly or see through such obstacles as buildings or fences. In this article, we describe how we can exploit this synergy by creating a seamless network of UAVs and UGVs. The keys to this are our framework and algorithms for search and localization, which are easily scalable to large numbers of UAVs and UGVs and are transparent to the specificity of individual platforms. We describe our experimental testbed, the framework and algorithms, and some results.
  • Publication
    Green Scheduling for Radiant Systems in Buildings
    (2012-10-01) Nghiem, Truong X; Behl, Madhur; Pappas, George J.; Mangharam, Rahul
    In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the theoretical results for general affine dynamical systems and applies them to electric radiant floor heating systems. The potential of the proposed method in reducing the peak power demand is demonstrated for a small-scale system through simulation in EnergyPlus and for a large-scale system through simulation in Matlab.