Pajic, Miroslav

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 10 of 47
  • Publication
    AUTOPLUG: An Architecture for Remote Electronic Controller Unit Diagnostics in Automotive Systems
    (2012-01-01) Pant, Yash Vardhan; Pajic, Miroslav; Mangharam, Rahul
    In 2010, over 20.3 million vehicles were recalled. Software issues related to automotive controls such as cruise control, anti-lock braking system, traction control and stability control, account for an increasingly large percentage of the overall vehicles recalled. There is a need for new and scalable methods to evaluate automotive controls in a realistic and open setting. We have developed AutoPlug, an automotive Electronic Controller Unit (ECU) architecture between the vehicle and a Remote Diagnostics Center to diagnose, test, update and verify controls software. Within the vehicle, we evaluate observerbased runtime diagnostic schemes and introduce a framework for remote management of vehicle recalls. The diagnostics scheme deals with both real-time and non-real time faults, and we introduce a decision function to detect and isolate faults in a system with modeling uncertainties. We also evaluate the applicability of “Opportunistic Diagnostics”, where the observerbased diagnostics are scheduled in the ECU’s RTOS only when there is slack available in the system. This aperiodic diagnostics scheme performs similar to the standard, periodic diagnostics scheme under reasonable assumptions. This approach works on existing ECUs and does not interfere with current task sets. The overall framework integrates in-vehicle and remote diagnostics and serves to make vehicle recalls management a less reactive and cost-intensive procedure.
  • Publication
    Architecture for a Fully Distributed Wireless Control Network
    (2011-04-12) Pajic, Miroslav; Aneja, Mansimar; Vemuri, Srinivas; Pappas, George; Mangharam, Rahul; Sundaram, Shreyas
    We demonstrate a distributed scheme for control over wireless networks. In our previous work, we introduced the concept of a Wireless Control Network (WCN), where the network itself, with no centralized node, acts as the controller. In this demonstration, we show how the WCN can be utilized for distillation column control, a well-known process control problem. To illustrate the use of a WCN, we have utilized a process-in-the-loop simulation, where the behavior of a distillation column was simulated in Simulink and interfaced with an actual, physical network (used as the control network), which consists of several wireless nodes, sensors and actuators. The goal of this demonstration is to show the benefits of a fully-distributed robust wireless control/actuator network, which include simple scheduling, scalability and compositionality.
  • Publication
    Towards Synthesis of Platform-Aware Attack-Resilient Control Systems: Extended Abstract
    (2013-04-09) Pajic, Miroslav; Bezzo, Nicola; Weimer, James; Alur, Rajeev; Mangharam, Rahul; Michael, Nathan; Pappas, George J; Sokolsky, Oleg; Tabuada, Paulo; Weirich, Stephanie; Lee, Insup
  • Publication
    Real-time Heart Model for Implantable Cardiac Device Validation and Verification
    (2010-01-20) Jiang, Zhihao; Pajic, Miroslav; Connolly, Allison T; Dixit, Sanjay; Mangharam, Rahul
    Designing bug-free medical device software is dif- ficult, especially in complex implantable devices that may be used in unanticipated contexts. Safety recalls of pacemakers and implantable cardioverter defibrillators due to firmware problems between 1990 and 2000 affected over 200,000 devices, comprising 41% of the devices recalled and are increasing in frequency. There is currently no formal methodology or open experimental platform to validate and verify the correct operation of medical device software. To this effect, a real-time Virtual Heart Model (VHM) has been developed to model the electrophysiological operation of the functioning (i.e. during normal sinus rhythm) and malfunctioning (i.e. during arrhythmia) heart. We present a methodology to extract timing properties of the heart to construct a timed-automata model. The platform exposes functional and formal interfaces for validation and verification of implantable cardiac devices. We demonstrate the VHM is capable of generating clinically-relevant response to intrinsic (i.e. premature stimuli) and external (i.e. artificial pacemaker) signals for a variety of common arrhythmias. By connecting the VHM with a pacemaker model, we are able to pace and synchronize the heart during the onset of irregular heart rhythms. The VHM has also been implemented on a hardware platform for closed-loop experimentation with existing and virtual medical devices. The VHM allows for exploratory electrophysiology studies for physicians to evaluate their diagnosis and determine the appropriate device therapy. This integrated functional and formal device design approach will potentially help expedite medical device certification for safer operation.
  • Publication
    Embedded Virtual Machines for Wireless Industrial Automation (Demo)
    (2009-01-01) Pajic, Miroslav; Mangharam, Rahul
    The factory of the future is the Wireless Factory - fully programmable, nimble and adaptive to planned mode changes and unplanned faults. Today automotive assembly lines loose over $22,000 per minute of downtime. The systems are rigid, difficult to maintain, operate and diagnose. Our goal is to demonstrate the initial architecture and protocols for all-wireless factory control automation. Embedded wireless networks have largely focused on open-loop sensing and monitoring. To address actuation in closed-loop wireless control systems there is a strong need to re-think the communication architectures and protocols for reliability, coordination and control. As the links, nodes and topology of wireless systems are inherently unreliable, such time-critical and safety-critical applications require programming abstractions where the tasks are assigned to the sensors, actuators and controllers as a single component rather than statically mapping a set of tasks to a specific physical node at design time. To this end, we introduce the Embedded Virtual Machine (EVM), a powerful and flexible runtime system where virtual components and their properties are maintained across node boundaries. EVM-based algorithms introduce new capabilities such as provably minimal graceful degradation during sensor/actuator failure, adaptation to mode changes and runtime optimization of resource consumption. Through the design of a micro-factory we aim to demonstrate the capabilities of EVM-based wireless networks.
  • Publication
    Network Synthesis for Dynamical System Stabilization
    (2011-11-01) Pajic, Miroslav; Sundaram, Shreyas; Pappas, George; Mangharam, Rahul
    We present our recent results in the area of distributed control over wireless networks. In our previous work, we introduced the concept of a Wireless Control Network (WCN), where the network acts as a decentralized structured controller. In this case, the network is not used only as a communication medium (as in traditional control paradigms), but instead as a fully distributed computational substrate. We show that the dynamics of the plant dictate the types of network topologies that can be used to stabilize the system. Finally, we describe how to obtain a stabilizing configuration for the WCN if the topological conditions are satisfied.
  • Publication
    Safety-Critical Medical Device Development Using the UPP2SF Model
    (2014-01-01) Pajic, Miroslav; Jiang, Zhihao; Lee, Insup; Sokolsky, Oleg; Mangharam, Rahul
    Software-based control of life-critical embedded systems has become increasingly complex, and to a large extent has come to determine the safety of the human being. For example, implantable cardiac pacemakers have over 80,000 lines of code which are responsible for maintaining the heart within safe operating limits. As firmware-related recalls accounted for over 41% of the 600,000 devices recalled in the last decade, there is a need for rigorous model-driven design tools to generate verified code from verified software models. To this effect we have developed the UPP2SF model-translation tool, which facilitates automatic conversion of verified models (in UPPAAL) to models that may be simulated and tested (in Simulink/Stateflow). We describe the translation rules that ensure correct model conversion, applicable to a large class of models. We demonstrate how UPP2SF is used in the model-driven design of a pacemaker whose model is (a) designed and verified in UPPAAL (using timed automata), (b) automatically translated to Stateflow for simulation-based testing, and then (c) automatically generated into modular code for hardware-level integration testing of timing-related errors. In addition, we show how UPP2SF may be used for worst-case execution time estimation early in the design stage. Using UPP2SF, we demonstrate the value of integrated end-to-end modeling, verification, code-generation and testing process for complex software-controlled embedded systems.
  • Publication
    Resilient Parameter-Invariant Control With Application to Vehicle Cruise Control
    (2013-03-20) Weimer, James; Bezzo, Nicola; Pajic, Miroslav; Pappas, George J.; Sokolsky, Oleg; Lee, Insup
    This work addresses the general problem of resilient control of unknown stochastic linear time-invariant (LTI) systems in the presence of sensor attacks. Motivated by a vehicle cruise control application, this work considers a first order system with multiple measurements, of which a bounded subset may be corrupted. A frequency-domain-designed resilient parameter-invariant controller is introduced that simultaneously minimizes the effect of corrupted sensors, while maintaining a desired closed-loop performance, invariant to unknown model parameters. Simulated results illustrate that the resilient parameter-invariant controller is capable of stabilizing unknown state disturbances and can perform state trajectory tracking.
  • Publication
    Model-Driven Safety Analysis of Closed-Loop Medical Systems
    (2012-10-01) Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian M.; Lee, Insup
    In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure.
  • Publication
    A Simple Distributed Method for Control over Wireless Networks
    (2011-04-01) Pajic, Miroslav; Sundaram, Shreyas; Pappas, George; Mangharam, Rahul
    We present a distributed scheme used for control over wireless networks. In our previous work, we introduced the concept of a Wireless Control Network (WCN), where the network itself, with no centralized node, acts as the controller. In this work, we show how the WCN can be modified to include observer style updates which substantially improves robustness of the closed-loop system to link failures. In addition, we analyze how the WCN simplifies extraction of the communication and computation schedules and enables system compositionality and scalability.