Dynamic Simulation for Zero-Gravity Activities

Loading...
Thumbnail Image
Penn collection
Center for Human Modeling and Simulation
Degree type
Discipline
Subject
dynamic simulation
3D computer graphics simulation
articulated body
human model
optimal control
motion planning
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Metaxas, Dimitris N
Huang, Gang
Goswami, Ambarish
Huh, Suejung
Contributor
Abstract

Working and training for space activities is difficult in terrestrial environments. We approach this crucial aspect of space human factors through 3D computer graphics dynamics simulation of crewmembers, their tasks, and physics-based movement modeling. Such virtual crewmembers may be used to design tasks and analyze their physical workload to maximize success and safety without expensive physical mockups or partially realistic neutral-buoyancy tanks. Among the software tools we have developed are methods for fully articulated 3D human models and dynamic simulation. We are developing a fast recursive dynamics algorithm for dynamically simulating articulated 3D human models, which comprises kinematic chains - serial, closed-loop, and tree-structure - as well as the inertial properties of the segments. Motion planning is done by first solving the inverse kinematic problem to generate possible trajectories, and then by solving the resulting nonlinear optimal control problem. For example, the minimization of the torques during a simulation under certain constraints is usually applied and has its origin in the biomechanics literature. Examples of space activities shown are zero-gravity self orientation and ladder traversal. Energy expenditure is computed for the traversal task.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1999-06-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Postprint version. Published in International Space Human Factors Workshop, June 1999, 9 pages.
Recommended citation
Collection