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Abstract: 
 
Working and training for space activities is 
difficult in terrestrial environments. We 
approach this crucial aspect of space human 
factors through 3D computer graphics dynamics 
simulation of crewmembers, their tasks, and 
physics-based movement modeling. Such virtual 
crewmembers may be used to design tasks and 
analyze their physical workload to maximize 
success and safety without expensive physical 
mockups or partially realistic neutral-buoyancy 
tanks. Among the software tools we have 
developed are methods for fully articulated 3D 
human models and dynamic simulation. We are 
developing a fast recursive dynamics algorithm 
for dynamically simulating articulated 3D human 
models, which comprises kinematic chains -- 
serial, closed-loop, and tree-structure -- as well 
as the inertial properties of the segments. Motion 
planning is done by first solving the inverse 
kinematic problem to generate possible 
trajectories, and then by solving the resulting 
nonlinear optimal control problem. For example, 
the minimization of the torques during a 
simulation under certain constraints is usually 
applied and has its origin in the biomechanics 
literature. Examples of space activities shown are 
zero-gravity self orientation and ladder traversal. 
Energy expenditure is computed for the traversal 
task. 
 
Keywords: dynamic simulation, 3D computer 
graphics simulation, articulated body, human 
model, optimal control, motion planning. 
 
1. Introduction: 
 
Working and training for space activities is 
difficult in terrestrial environments. There is a 
great demand for human factors regarding the 
dynamic ability of the human body in space. In 
computer graphics (CG) and virtual reality (VR) 
such human factors would be helpful to create 
realistic human animations, and design tasks to 
maximize success and safety without always 
having to resort to expensive physical mockups 
or partially realistic neutral-buoyancy tanks.  The 
latter accommodates some of the 0-gravity 
experience but adds unrealistic dynamic 

components such as damping from the water 
viscosity and different masses for large 
manipulated objects. 
 
There are many forward and inverse dynamics 
simulation techniques for simulating human 
behavior that have been implemented by CG 
researchers [4][9][11], but they are not 
computationally efficient and simulations cannot 
be done in real time. Some control techniques 
have also been used, such as feedback control to 
follow the desired trajectories generated by 
inverse kinematics [4] and the spacetime 
constraint method based on optimization theory 
[12]. However, they do not address explicitly 
either the torque optimization problem or 
dynamics that deal with the various topological 
configurations of the articulated body. 
 
This paper first presents an efficient way to 
convert the geometry of an articulated body to a 
dynamic tree structured model, which is suitable 
for dynamic simulation and motion planning. In 
the dynamic tree, each joint has only one degree 
of freedom, which gives only one parent link and 
one child link. Each link has its own root joint, 
and up to three branch joints. The link can be a 
dummy link, which has no mass, length and 
inertia. The root of the dynamic tree usually is a 
base joint fixed to the reference frame. Each leaf 
of the dynamic tree must be link, though the link 
can be a dummy link. 
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Figure 1. The Relationship between Joints and Links 

 
Section 2 of the paper shows a simple type of 
function that we used for simulating the motions, 
and its properties for kinematic and dynamic 
simulation. All the dynamic simulations in this 
paper use this function, which we call kinematic 
motion function, to specify the motion of each 
joint or the body. 
 



In Section 3 an efficient recursive dynamics 
method for the dynamic tree based on 
Featherstone’s method [2] is studied and used to 
dynamically simulate astronaut self-orientation 
(Section 4) and ladder traversal in 0-gravity 
(Section 5). Furthermore, in Section 6 we present 
an optimal control algorithm based on this 
efficient recursive dynamics method and gradient 
method to find the local minimum joint-torque 
motion under specified constraints [3].  From the 
biomechanics point of view, the minimum joint-
torque motion is the optimal motion under 
certain conditions for human body, for example 
the motion to do weight lifting in 10 seconds.  
Finally, in Section 7 we outline some energy 
expenditure models that can be evaluated based 
on the computed joint torques. 
 
2. Dynamic Model for an 

Articulated Body: 
 
The physically based simulation of human 
motion is obtained from kinematic and dynamic 
calculations. The efficiency of the computation 
depends on the algorithms used for these 
calculations.  
 
An articulated body can be represented 
topologically as a tree whose links represent its 
major parts. Basically, this means there are no 
kinematic loops and that no part of the 
articulated body is entirely disconnected from 
the rest. An immobile link (or an appropriately 
chosen link if none of the links is immobile) is 
considered as the root of the dynamic tree, and 
the outermost links are its leaves. Two links 
connected by a joint are the parent and child 
links of the joint, depending on whether the link 
is more proximal or distal to the root. The joint is 
called the root joint of its child link. The joints 
with the same parent link are called the branch 
joints of the link. The base link is the link 
connecting the fixed point to the root joint of the 
dynamic tree. Every link except the base link has 
exactly one root joint, but may have up to three 
branch joints if modeling humans. 
 
We represent the articulated body as a tree 
structure. Each joint has the following 
properties: 
1) Tree structure properties: the index for the 

joint, the index for its parent and child links. 
Note the base link is defined as the null link, 
and the joint connected to the null link is 
joint 0. (See Fig. 2.) 

2) Physical properties: the number of degrees 
freedom of the joint, the joint type1, (such as 
XY-joint, ZY-joint, and XYZ-joint, etc.) the 
joint limits, the joint torque limits, the 
damping coefficients for the joint. 
Note: each joint has its own joint coordinate 
frame called joint private coordinate frame, 
which is different from the joint local 
coordinate frame defined in the tree 
structure, in which the joint rotation axis is 
always the z-axis. For example: in the ZY-
joint private coordinate frame, the z-axis and 
the y-axis are joint rotation axes, and the x-
axis is defined in the right-hand sense. In the 
joint local coordinate frame both rotation 
axes are defined as the z-axis. By rotating 
the first z-axis 90 degrees it coincides with 
the second z-axis. (See Fig. 2.) 
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Figure 2. Joint Private Coordinate frame XYZO −  for 
ZY-joint, Joint Local Coordinate frame 

iiii ZYXO −  for o-

z the rotation axis, and ’’’
iiii ZYXO −  for o-y the rotation 

axis 

Each link has the following geometric and 
dynamic properties:  
1) Tree structure properties: the index for the 

link, the index for its root joint, the number 
of the branch joints, the index for each 
branch joint. Note a leaf link has no branch 
joint, we define it as the null joint. 

2) Dynamic properties: the mass, the center of 
mass in the link’s root joint coordinate 
frame, the principal inertial matrix, and the 
rotation matrix from the link’s root joint 
coordinate frame to its principal coordinate 
frame. 

3) Denavit-Hartenberg notation [12] 
parameters for each pair of the link’s root 

                                                           
1 We consider only multiple-degree-of-freedom joint with 
orthogonal rotation axis. 



and branch joint j
2 (See Fig. 3): the length 

of the common normal 
ja ; the distance 

between the origin 
1−iO  and the point 

jH ; 

the angle 
jα  between the link’s root joint 

axis and branch joint axis in the right-hand 
sense; the angle 

jθ  between the link’s root 

joint coordinate frame x -axis and the 
common normal, which is the x-axis of the 
link’s branch joint coordinate frame, 
measured about its root joint z-axis in the 
right-hand sense. 

 
If a link’s root joint is a multiple-degree-of-
freedom joint, the link’s root joint z-axis is the 
last rotation axis in the joint private coordinate 
frame. For example if the joint type is XY-joint, 
the y-axis in the joint private coordinate frame is 
the link’s root joint z-axis we are using. In the 
same manner, if a link’s branch joint is a 
multiple-degree-of-freedom joint, the link’s 
branch joint axis is the first rotation axis in the 
joint private coordinate frame. 
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Figure 3. Denavit-Hartenberg Notation 

 
The numbering scheme we use for the articulated 
body is that each link has the same index number 
as the link’s root joint. The index of a link’s root 
joint is less than the index of the link’s leftmost 
branch joint. The index of a link’s left branch 
joint is less than the index of the link’s right 
branch joint. (The numbering on Fig. 4 follows 
this scheme.) Thus, we define the articulated 
body as a left-right tree-like structure. 

                                                           
2 Strictly speaking, the pair is the single-degree-of-freedom 
root joint and the single-degree-of-freedom branch joint. 
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Figure 4. Numbering Scheme for Articulated Tree 

 
We now present a method to efficiently represent 
an articulated tree using a dynamic tree 
representation. Multiple-degree-of-freedom 
joints can be synthesized from the appropriate 
number of single-degree-of-freedom joints. A 
moving articulated body could be treated as a 
dynamic tree structure by introducing a fictitious, 
unpowered joint between the root and some fixed 
point. If the root of the dynamic tree has 
complete motion freedom then the joint has six 
degrees of freedom. 
 
The articulated body defined as an articulated 
tree structure is converted to a dynamic tree by 
representing every multiple-degree-of-freedom 
joint with the appropriate number of single-
degree-of-freedom joints. Based on our method, 
we add dummy links into a multiple-degree-of-
freedom joint, such that every joint in the 
dynamic tree is a single-degree-of-freedom joint. 
The dummy link is defined as the link with no 
length, no mass, and no inertia. Between the two 
consecutive generated single-degree-of-freedom 
joints there is a rotation matrix, which defines 
the transformation matrix between the two new 
joint local coordinates. Therefore a two-degree-
of-freedom joint will generate two single-degree-
of-freedom joints, such that the z-axes in both of 
the joint local coordinates are parallel to the 
original joint rotation axes. The numbering 
scheme for the dynamic tree is the same for the 
articulated tree. (See Fig. 5.) The joint i 
coordinate frame is attached to link i. 
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Figure 5. Numbering Scheme for Dynamic Tree, which is 
generated from Articulated tree in Fig. 4. 
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two single-degree-of-freedom joints and one dummy link. 
(Compare with Fig. 1.) If joint i in articulated tree can 
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1+jjT  is the transformation matrix between the joint 

j local coordinate frame and the joint j+1 local coordinate 
frame. 

 
3. Kinematic Motion Function: 
 
In our simulation we would like to assess the 
feasibility of continuous motion. Therefore, we 
first need to generate these motions and then use 
inverse dynamics to compute the joint torques. 
The human motion simulation is carried out 
based on kinematic calculations, and the joint 
torques are obtained by inverse dynamics. The 
issue is what kind of function we should use to 
specify the motion of joints or bodies. There are 
an infinite number of functions we could choose 
for the motion simulation, for example linear 
functions and quadratic functions. However, 

most human motion starts with zero velocity and 
zero acceleration, and ends with zero velocity 
and zero acceleration as well. To satisfy these 
boundary conditions, we choose the simplest 
type of function.  Its derivative (namely, 
velocity) function is in the form of: 

( ) ( ) ( )22
00 ttttCtx e −−=

�  

where 
0C  is a constant that can be calculated 

from the initial and ending positions, 
0t  is the 

starting time, and 
et  is the ending time. 

 
For simplicity, we set 00 =t , Tte = , and 

( ) 00 =x , ( ) XTx = . The kinematic motion 

function is 
( ) ( )22

0 tTtCtx −=
�  

This function obviously satisfies the velocity and 
acceleration constraints. Namely, 

( ) 00 =x
� , ( ) 0=Tx

� , ( ) 00 =x
�� , ( ) 0=Tx

�� . 

We integrate the velocity function to obtain the 
motion function: 

( ) 322
0 5

1

2

1

3

1
ttTtTCtx 





 +−=  

From ( ) XTx = , we get 

50 30
T

X
C =  

So the function for the motion simulation is 

( ) ( ) 322
5

61510 ttTtT
T

X
tx +−=  (1) 

The variable ( )tx  can represent a position vector 

(the three components have different parameters 
of the kinematic motion function) or joint 
variable (for example ( )tθ  for a revolute joint). 

 
Now we study a more complicated motion 
problem, in which the motion function should 
satisfy the constraint that the maximum speed 
during the motion should have an upper bound 

maxV . First we solve the function for the motion 

simulation as above, and then check if 

( )
T

X
TxV

8
15

2max =≥
�  (since the kinematic motion 

function reaches its maximum at the middle of 
the motion).  If it is satisfied, the function we 
calculated is the final function for the motion 
simulation. If it is not satisfied, we will change 
the motion to three phases. The first phase is the 
acceleration phase, in which the motion speeds 
up to 

maxV  in 
2t  seconds. The second phase is the 

constant speed phase, in which the motion keeps 
the speed at 

maxV  for 
1t  seconds. The third phase 



is the deceleration phase, in which the motion 
slows down to zero velocity in 

2t  seconds. Thus, 

T
V

X
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4. Self Orientation: 
 
People re-orient themselves easily on earth since 
gravity assures a force component and therefore 
an expectation of friction with the supporting 
surface. A space walker can move and make 
turns if equipped with SAFER (Simplified Aid 
for Extravehicular activity Rescue), which 
produces six degrees of freedom in movement. 
But how can an astronaut makes turns when 
floating inside the vehicle with no external force 
and torque acting on her body and no hand or 
foot restraints?  In this section, we describe the 
dynamic theory -- based on the conservation of 
momentum and Featherstone’s inverse recursive 
dynamics -- which allows the astronaut to do a 
self-orientation. Then we do the simulation and 
calculate the joint torques during the simulated 
motion. 
 
A 0-gravity self-orientation motion can be 
completed in three steps: leg lifting, leg twisting, 
and leg closing.  

   
Figure 7. Standing Posture Figure 8. Leg Lifting 

   
Figure 9. Leg Twisting Figure 10. Leg Closing 

For the purpose of this simulation, we use a 
simplified articulated body which includes two 
joints (the left and right hip joints) and three 
links (the torso link, the left and right leg links), 
which can be converted to a dynamic tree with 
six joints and seven links. (See Fig. 11.) The 

XYZO −  frame is the reference frame. The torso 
link coordinate frame 

0000 ZYXO −  is attached to 

the center of mass of the torso. The right hip 
joint private coordinate frame 

1111 ZYXO −  and 

the left hip joint private coordinate frame 

2222 ZYXO −  are attached to the right and left leg 

links, respectively. 
1C  and 

2C  are the center of 

mass of the right and left legs, respectively. 
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Figure 11. Coordinate frames for Articulated Body and 
its Dynamic Tree. Note: L1, L2, L4, and L5 are dummy 
links 

 
Since the astronaut is floating inside the vehicle, 
there is no external force and torque exerted on 
the astronaut, and so spatial momentum (i.e. 
linear and angular momentum of the human 
body) is conserved during the motion. The 
dynamic notations we use in this paper are based 
on those in Featherstone’s book. The 
conservation of momentum is expressed as: 
 0̂ˆˆˆˆˆˆ

663300 ==++ constvvv III  

where 
iÎ ( 60 �=i ) is the spatial inertia for each 

link in the reference frame. 
iv̂ ( 60 �=i ) is the 

spatial velocity for each link in the reference 
frame.  The spatial velocities 

3v̂  and 
6v̂  of the 

left and right leg links can be written as: 



33221103
ˆˆˆˆˆ qSqSqSvv
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66554406
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where ( )tqi
 ( 60 �=i ) is the specified function 

for motion simulation during each step, 
computed from (1). 

iŜ  ( 60 �=i ) is the spatial 

vector for the axis of joint i.  
 
The spatial velocity 

0v̂  is obtained by solving the 

above equations: 

( )
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By integrating 

0v̂  or taking its derivatives, we 

can get the position and orientation of the torso 
link and the spatial acceleration of it as well. 
 
Let 

0̂f  be the resultant spatial force exerted on 

the torso link through the right and left hip joints. 

0̂f  gives the overall rate change of momentum 

for the torso link. 

( ) 00000000 ˆˆˆˆˆˆˆˆˆ vvav
dt

d
f III ×+==  

In order to get the left-hip joint torque, the 
spatial force 

3̂f  is computed as 

333333 ˆˆˆˆˆˆˆ vvaf II ×+=  

where
( )

( ) 3322332211

332211033221103
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++×++++=

The joint torque about each joint axis is thus: 

31
ˆˆ fSQ S
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32
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33
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5. Ladder Traversal: 
 
Since an astronaut floats in space (0-gravity), it 
is hard to keep balance among the limbs when 
traversing a ladder. By letting the legs float free 
and only using the hands to grab the bars, the 
astronaut can control her body motion. In this 
Section we do the dynamic simulation and 
calculate the joint torques, so we can compute 
the maximum possible workload for an astronaut 
traversing a ladder.  In the future, we plan to use 
computer vision techniques to capture an actual 
astronaut’s movement for detailed comparison. 
 
The articulated tree we used to simplify the 
astronaut body consists of eight joints and 7 
links. (See Fig. 12.) 
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Figure 12. Simplified Articulated Tree with 13 degrees of 
freedom (All the frame are joint private coordinate 
frames.) 

 
A dynamic tree with 13 joints and 13 links can 
be generated from the articulated tree easily. We 
add a dummy link to the left wrist z-joint if the 
right wrist y-joint is the root joint for the 
dynamic tree. 
 
In order to simplify the simulation, we assume 
there are no dynamic closed loops during the 
motion. Namely, if the right hand grabs the bar 
then the left hand must be free, this is 
simplification is based on how astronauts 
traverse ladders. We can divide the motion into 
two kinds of motion periods: 1) Starting/ending 
motion period, 2) Middle motion period. The 
starting motion period begins with both hands on 
the bar, but only one grabbing it (say right hand), 
and ends with the free hand (left hand) on the 
front bar. The ending motion period is the 
reverse of the starting motion period. The middle 
motion period starts with one hand grabbing bar i 
(say right hand) and the other hand (left hand) on 
bar (i-1), and ends with the other hand (left hand) 
on bar (i+1). (See Fig. 13,14.) 
 

 
Figure 13. Ending Posture, which is the same as starting 
posture 

  
 (a)   (b) 

  
 (c)   (d) 

  
 (e)   (f) 



 
   (g) 

Figure 14. Animation Sequence of Ladder Traversal in 
one period 

 
The kinematic motion functions are computed in 
two levels. The global motion planning level 
gives the simulated motion for the torso link by 
the method we described in Section 2. The 
periodic motion planning level gives the 
simulated motions for each joint during that 
period. These functions are calculated by giving 
the initial and final positions for joint-variables 
and the maximum speed constraints. The initial 
and final joint-variables are computed based on 
inverse kinematics, with the position and 
orientation of the torso link specified, and the 
hands’  positions are known at each period’s 
initial and final stages. The velocity of the torso 
link (obtained from the periodic motion planning 
level) in the direction of motion should be 
consistent with the one computed from the 
global motion planning level. Once we have the 
functions of the simulated motion for each joint, 
we calculate the joint torques. 
 
The above computes kinematics. In order to 
compute the joint torques we use an efficient 
calculation scheme, which is similar to 
Featherstone’s and can be obtained by 
performing these calculations pertinent to link i 
in joint i-coordinate frame. The equations in joint 
i-coordinate frame, which is attached to link i, is 
as follows: 

iiparentiparentiii qSvv
�’

..
ˆˆˆˆ += X , ( 0̂ˆ .0 =parentv ) 

iiiiiparentiparentiii qSqSvaXa
��� ’’
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6. Optimal Control: 
 
The above simulations are done in real time. But 
we also interest in optimized motion of the 
human motion under certain specified 
constraints, which can not be done in real time. 
The optimal control problem is formulated by 
minimizing the joint torques, since it is suitable 
in space applications. The problem can be stated 
as [3]: 

Optimize: ( )[ ]






î




∑∫

=

DOF

k

t

t

ijk
q

f

ij

dtqt
1

2

0

,min τ  

Subject to all the given constraints 
 
where DOF is the total degrees-of-freedom of 
the articulated body. ( )ijk qt,τ  is the joint torque at 

time t when the functions of the simulated 
motion are expressed in B-Spline functions [1] 
with the control points 

ijq . 

 
The nonlinear programming method requires the 
explicit calculation of the gradient. We define 
the optimization function based on a given set of 
control points 

ijq  and the weight coefficients 
kλ  

for all the constraints: 

( ) ( )[ ] ( )∑∑ ∫ +=
=

n

k
ijkk
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k

t

t

ijkkij qtCdtqtqF
f

,,,
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0

λτλ  

where n is the total number of constraints. 
 
We optimize ( )kijqF λ,  by using the gradient 

method: 
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where ∑=
DOF

i
iNm , 

iN is the number of B-spline 

control points for each joint’s simulated motion 
function in B-spline form. Lo and Metaxas [6] 
give the details on how to compute the gradient 
of the optimization function ( )kijqF λ, . By 

solving the above linear equation system, we 
obtain 

ijqδ  and 
kδλ . And we have the new set of 

the control points and the weight coefficients: 
( ) ( )

ij
l

ij
l

ij qqq δ+=+1 , 
( ) ( )

k
l

k
l

k δλλλ +=+1 . 

If the iteration index l is larger than the specified 
maximum iteration times, or 

1<<ijij qq δδ  and 1<<kk δλδλ , 

we choose ( )1+l
ijq  as the final control points for 

each joint’s B-spline kinematic motion function.  
 
7. Energy Expenditure: 
 
It is commonly suggested that skilled human 
movements optimize certain criteria, which are 
related to the energy expenditure [13]. 
 
Among the suggested criteria, we elected to 
measure the virtual human's energy expenditure 
based on the following quantities: 



a) the weighted sum of the absolute values of 
the joint torque, 

b) the change of the total mechanical energy of 
the body, 

c) the mechanical power generated or 
transferred in the joints, and 

d) the rate of sudden change in movement 
(jerk). 

 
The weighted sum of the absolute 
values of the joint torque 
 
The time integral of the joint torque has been 
suggested as a useful measure of the energy 
expenditure when it is appropriately weighted for 
the negative and positive work conditions 
[13,16]. 
 
Among many suggestions, Williams[14] and 
Pierrynowski et al. [15] have reported that  the 
negative work is approximately three times more 
efficient than the positive work. For a given 
joint, the work is positive when the torque and 
the angular velocity have the same direction, and 
negative otherwise. The positive joint work 
corresponds to the concentric muscle activity and 
the negative joint work corresponds to the 
eccentric muscle activity. So the sum of the 
weighted absolute joint moments is used as our 
energy expenditure measure where the absolute 
joint moment is defined as  

|| ii τρ =         if oii ≥ωτ *  

otherwisei ||
3
1 τ=

 

where 
iτ  refers to the torque of the joint i and  

iω  refers to the angular velocity of the joint i. 

Fig. 15 shows the weighted sum of the absolute 
joint torque without any shoulder constraint 
where the high pitch denotes the time when the 
astronaut touches the ladder. 
 

Figure 15. Weighted Sum of the absolute joint torques 
 
The change of the total mechanical 
energy of the body  

)( i

i

i RKETKEE += ∑
 

where  
iTKE refers to the Translational Kinetic 

Energy of the joint i and 
iRKE  the Rotational 

Kinetic Energy  of  the joint i. 
 
The mechanical power generated or 
absorbed at the joints 
 

)(P 1 ii

i

i ωωτ −= +∑
 

where 
iτ  refers to the torque of the joint i and 

iω  

refers to the angular velocity of the joint i. 
 
The mechanical power transferred at 
the joints 

∑=
i

ipP

 

ιι ωτ *=ip           if oii ≥ωτ *  

otherwiseii |*|
3
1 ωτ=

 

where 
iτ  refers to the torque of the joint i and 

iω  

refers to the angular velocity of the joint i. This 
criterion incorporates both concentric and 
eccentric muscle activities. 
    
    
The rate of sudden change in 
movement(Jerk) 

∑=
i

iJA

 

where 
iJ  refers to the time derivative of 

acceleration of the joint i(jerk). The jerk is 
shown to be minimized for a certain class of 
activities [17]. 
 
8. Conclusion: 
 
Dynamically correct human motion simulation 
requires a proper dynamic tree model efficiently 
created from a simplified articulated tree.  It also 
requires the generation of an articulated body 
movement pattern from a starting posture to a 
final posture. The main focus of this paper is to 
simulate self-orientation and ladder traversal of 
an astronaut in 0-gravity. These and other 
dynamic simulations may be used for both 
visualization and analysis of 0- or micro-graity 
tasks.  We implemented the methods developed 
here to generate the dynamic tree, simulate the 



desired motions, and compute the energy 
expenditure functions.  These procedures will be 
useful in the future analysis and safety evaluation 
of novel space activities. 
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