Health Care Management Papers

Document Type

Technical Report

Date of this Version

7-2009

Publication Source

The American Naturalist

Volume

174

Issue

1

Start Page

68

Last Page

81

DOI

10.1086/599296

Abstract

Mathematical models of predator‐prey interactions in a patchy landscape are used to explore the evolution of dispersal into sink habitats. When evolution proceeds at a single trophic level (i.e., either prey or predator disperses), three evolutionary outcomes are observed. If predator‐prey dynamics are stable in source habitats, then there is an evolutionarily stable strategy (ESS) corresponding to sedentary phenotypes residing in source habitats. If predator‐prey dynamics are sufficiently unstable, then either an ESS corresponding to dispersive phenotypes or an evolutionarily stable coalition (ESC) between dispersive and sedentary phenotypes emerges. Dispersive phenotypes playing an ESS persist despite exhibiting, on average, a negative per capita growth rate in all habitats. ESCs occur if dispersal into sink habitats can stabilize the predator‐prey interactions. When evolution proceeds at both trophic levels, any combination of monomorphic or dimorphic phenotypes at one or both trophic levels is observed. Coevolution is largely top‐down driven. At low predator mortality rates in sink habitats, evolution of predator movement into sink habitats forestalls evolution of prey movement into sink habitats. Only at intermediate mortality rates is there selection for predator and prey movement. Our results also illustrate an evolutionary paradox of enrichment, in which enriching source habitats can reduce phenotypic diversity.

Copyright/Permission Statement

©2009 by the University of Chicago Press.

Keywords

dispersal evolution, predator-prey interactions, source-sink dynamics

Share

COinS
 

Date Posted: 27 November 2017

This document has been peer reviewed.