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Appendix B from S. J. Schreiber and E. Saltzman, “Evolution of
Predator and Prey Movement into Sink Habitats”
(Am. Nat., vol. 174, no. 1, p. 68)

Invasion Exponents and Selection for Slower Dispersers
Invasion Exponents

To define the prey and predator invasion exponents, consider a prey-predator population, with abundances (N1,
N2, P1, P2), that has been playing the dispersal strategy (m, m) sufficiently long for the ecological dynamics to
settle on its asymptotic state (e.g., an equilibrium or a periodic orbit). In the initial phase of their invasion, the
dynamics of the mutant population are well approximated by the linear system of differential equations

˜ dN1

˜dt N1p A (t) ,prey ˜[ ]˜ NdN 22 
dt 

where

 N (t) aP (t)1 1 ˜ ˜b 1 � � d � � m m1 1( )K 1 � haN (t)1 1A (t) pprey aP (t)2 ˜ ˜m r � � m2 1 � haN (t) 2

and (N1(t), N2(t), P1(t), P2(t)) corresponds to the resident system. Let be a time-varying matrix such thatF (t)prey

is the identity matrix and . Whenever the limit exists, we define the invasionF (0) (d/dt)F p A (t)Fprey prey prey prey

exponent of the mutant prey as

1
˜I (m, m) p lim ln k F (t) k ,prey preyttr�

where denotes the operator norm of the fundamental matrix . If the invasion exponent isk A(t) k F (t) Iprey prey

positive (respectively, negative), then the mutant prey can (respectively, cannot) invade the resident population. If
the resident population is at an equilibrium, then A(t) does not vary in time, and the invasion exponent is given
by the stability modulus r(A) of A: the largest real part of the eigenvalues of A (see, e.g., Smith 1995).

We can define the predator invasion exponent in a similar manner. Namely, if a rare mutant population of
predators the dispersal strategy appears in the resident population, then we define the predator invasionm̃

exponent as

1
˜I (m, m) p lim ln k F (t) k ,pred predttr�

where is the identity matrix, , andF (0) (d/dt)F p A (t)Fpred pred pred pred
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vaN (t)1 ˜ ˜� d � m m11 � haN (t)1A (t) p .pred vaN (t)2 ˜ ˜m � d � m21 � haN (t) 2

Selection against Dispersal

Here, we provide a general argument for the evolution of slower dispersers in temporally homogenous
environments with n patches. Consider a one-parameter family of matrices

˜ ˜B(m) p D � mM,

where D is a nonscalar diagonal matrix and M is an irreducible matrix with zero column sums andn # n
nonnegative off-diagonal elements. One should think of the diagonal entries of D corresponding to the per capita
growth rates in the different patches. The off-diagonal entries of M correspond to normalized per capita
immigration rates, and the diagonal entries of M correspond to normalized per capita emigration rates.

For example, the invasion exponent for the prey is determined by the matrix

 N aP1 1 ˜ ˜b 1 � � d � � m m1 1( )K 1 � haN1 1A p ,aP2 ˜ ˜m r � � m2 1 � haN 2

and this matrix can be rewritten as

 N aP1 1b 1 � � d � 0 �1 11 1  ( )K 1 � haN1 1 ˜A p � m . aP2 0 r � 1 �1 2 \1 � haN 2\ M
D

Under equilibrium conditions for the resident population, the per capita growth rates are positive in patch type 1
and negative in patch type 2. Hence, D is not a scalar matrix.

We will show that the stability modulus of is a strictly decreasing function of m. In the case of˜ ˜r(B(m)) B(m)
our models, this fact implies that the invasion exponent is a decreasing function of whenever the˜ ˜I (m, m) mprey

resident population playing strategy m is at equilibrium. Because , it follows that ˜I (m, m) p 0 I (m, m) ! 0prey prey

whenever and whenever . In other words, the faster dispersers cannot invade the˜ ˜ ˜m 1 m I (m, m) 1 0 m ! mprey

equilibrium determined by the slower dispersers, while slower dispersers can invade the equilibrium determined
by faster dispersers. This implication is biologically meaningful only when the equilibrium determined by the
resident populations is stable. A similar argument applies to the predator invasion rates.

Let . We will show that . Given any , choose such that′˜ ˜ ˜ ˜f (m) p r(B(m)) f (m) ! 0 m p x 1 0 a 1 0 axI ≥
, where I is the identity matrix. Definemin {D, 0} � x min {M, 0} n # n

1
L p D � aI,

x

g(t) p r(L � tM).

Our choice of a and our assumption that M is irreducible imply that is a nonnegative irreducible matrix.M � L

Moreover, because the column sums of M are 0, the column sums of equal the diagonal entries of .M � L L

The following Lemma from Kirkland et al. (2006), applied to , implies thatL � tM p (1 � t)L � t(M � L)
.′g (1) ! 0



App. B from S. J. Schreiber and E. Saltzman, “Evolution of Sink Populations”

3

Lemma. Suppose that A is an irreducible nonnegative matrix, and let DA be the diagonal matrix of column
sums of A. Let be a diagonal matrix such that . For , let . ThenL L ≥ D 0 ≤ t ≤ 1 h(t) p l[(1 � t)L � tA]A

.′h (1) ! 0
Because

r(xL � txM)
g(t) p

x

r(D � axI � txM)
p

x

r(D � txM)
p � a

x

f (xt)
p � a,

x

it follows that . Because was arbitrary, is a decreasing function of as′ ′ ˜ ˜ ˜g (1) p f (x) ! 0 x p m 1 0 f (m) m 1 0
claimed.
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