Efficient Querying and Maintenance of Network Provenance at Internet-Scale

Loading...
Thumbnail Image
Penn collection
Technical Reports (CIS)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Zhou, Wenchao
T, Tao
Li, Xiaozhou
Mao, Yun
Contributor
Abstract

Network accountability, forensic analysis, and failure diagnosis are becoming increasingly important for network management and security. Such capabilities often utilize network provenance – the ability to issue queries over network meta-data. For example, network provenance may be used to trace the path a message traverses on the network as well as to determine how message data were derived and which parties were involved in its derivation. This paper presents the design and implementation of ExSPAN, a generic and extensible framework that achieves efficient network provenance in a distributed environment. We utilize the database notion of data provenance to “explain” the existence of any network state, providing a versatile mechanism for network provenance. To achieve such flexibility at Internet-scale, ExSPAN uses declarative networking in which network protocols can be modeled as continuous queries over distributed streams and specified concisely in a declarative query language. We extend existing data models for provenance developed in database literature to enable distribution at Internet-scale, and investigate numerous optimization techniques to maintain and query distributed network provenance efficiently. The ExSPAN prototype is developed using RapidNet, a declarative networking platform based on the emerging ns-3 toolkit. Experiments over a simulated network and an actual deployment in a testbed environment demonstrate that our system supports a wide range of distributed provenance computations efficiently, resulting in significant reductions in bandwidth costs compared to traditional approaches.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2010-01-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-10-11.
Recommended citation
Collection