Improved Sequence-Based Speculation Techniques for Implementing Memory Consistency

Loading...
Thumbnail Image
Penn collection
Technical Reports (CIS)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

This work presents BMW, a new design for speculative implementations of memory consistency models in shared-memory multiprocessors. BMW obtains the same performance as prior proposals, but achieves this performance while avoiding several undesirable attributes of prior proposals: non-scalable structures, per-word valid bits in the data cache, modifications to the cache coherence protocol, and global arbitration. BMW uses a read and write bit per cache block and a standard invalidation-based cache coherence protocol to perform conflict detection while speculating. While speculating, stores to block not in the cache are placed into a coalescing store buffer until those misses return. Stores are written speculatively to the primary cache, and non-speculative state is maintained by cleaning dirty blocks before being written speculatively. Speculative blocks are invalidated on abort and marked as non-speculative on commit. This organization allows for fast, local commits while avoiding a non-scalable store queue.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2008-05-27
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-08-18.
Recommended citation
Collection