Part Description and Segmentation Using Contour, Surface and Volumetric Primitives

Loading...
Thumbnail Image
Penn collection
Technical Reports (CIS)
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Discipline
Subject
GRASP
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Gupta, Alok
Contributor
Abstract

The problem of part definition, description, and decomposition is central to the shape recognition systems. The Ultimate goal of segmenting range images into meaningful parts and objects has proved to be very difficult to realize, mainly due to the isolation of the segmentation problem from the issue of representation. We propose a paradigm for part description and segmentation by integration of contour, surface, and volumetric primitives. Unlike previous approaches, we have used geometric properties derived from both boundary-based (surface contours and occluding contours), and primitive-based (quadric patches and superquadric models) representations to define and recover part-whole relationships, without a priori knowledge about the objects or object domain. The object shape is described at three levels of complexity, each contributing to the overall shape. Our approach can be summarized as answering the following question : Given that we have all three different modules for extracting volume, surface and boundary properties, how should they be invoked, evaluated and integrated? Volume and boundary fitting, and surface description are performed in parallel to incorporate the best of the coarse to fine and fine to coarse segmentation strategy. The process involves feedback between the segmentor (the Control Module) and individual shape description modules. The control module evaluates the intermediate descriptions and formulates hypotheses about parts. Hypotheses are further tested by the segmentor and the descriptors. The descriptions thus obtained are independent of position, orientation, scale, domain and domain properties, and are based purely on geometric considerations. They are extremely useful for the high level domain dependent symbolic reasoning processes, which need not deal with tremendous amount of data, but only with a rich description of data in terms of primitives recovered at various levels of complexity.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1989-05-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-33.
Recommended citation
Collection