Recycling of Neodymium and Dysprosium from Permanent Magnets

Loading...
Thumbnail Image
Penn collection
Senior Design Reports (CBE)
Degree type
Discipline
Subject
Biochemical and Biomolecular Engineering
Chemical Engineering
Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

This project seeks to recycle neodymium and dysprosium from used neodymium-iron-boron, NdFeB, permanent magnets. Our alternative recycling strategy is based on a method developed by Dr. Eric Schelter of the University of Pennsylvania Department of Chemistry and his research group. This process involves the use of a novel tripodal nitroxide ligand, H3TriNOX. The proposed process design converts used NdFeB magnets to neodymium and dysprosium. The goal production of neodymium oxide is 126,000 kg/year and of dysprosium oxide is 14,000 kg/year, which would cost $12,500,000 with the current price rate of neodymium and dysprosium. Based on the results of the economic analysis, this project would be unprofitable in the near future.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2016-04-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection