Online Learning: Beyond Regret

Loading...
Thumbnail Image
Penn collection
Statistics Papers
Degree type
Discipline
Subject
Computer Sciences
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Rakhlin, Alexander
Sridharan, Karthik
Tewari, Ambuj
Contributor
Abstract

We study online learnability of a wide class of problems, extending the results of Rakhlin et al. (2010a) to general notions of performance measure well beyond external regret. Our framework simultaneously captures such well-known notions as internal and general Φ-regret, learning with non-additive global cost functions, Blackwell's approachability, calibration of forecasters, and more. We show that learnability in all these situations is due to control of the same three quantities: a martingale convergence term, a term describing the ability to perform well if future is known, and a generalization of sequential Rademacher complexity, studied in Rakhlin et al. (2010a). Since we directly study complexity of the problem instead of focusing on efficient algorithms, we are able to improve and extend many known results which have been previously derived via an algorithmic construction.

Advisor
Date of presentation
2011-01-01
Conference name
Statistics Papers
Conference dates
2023-05-17T15:26:53.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection