Orientational Phases for M3C60

Loading...
Thumbnail Image
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

The mechanism of the orientational ordering of C60 in alkali-metal-doped fullerenes M3C60 is studied. Since the M-C60 (M=K,Rb) interactions cause the C60 molecules to assume one of two standard orientations, this model is equivalent to a generalized Ising model on a fcc lattice. The Ising interactions depend on two type of energies: (1) the direct interaction, i.e., the orientationally dependent part of interactions between nearest-neighboring C60 molecules (each carrying charge -3e), and (2) the band energy of the electrons transferred from M+ ions to the C603- ions. It is shown that the contribution to the pairwise interaction from the direct orientational interaction is ferromagnetic and dominantly nearest neighbor. However, contributions from the band (kinetic) energy of the conduction electrons are found to be antiferromagnetic for first- and third-nearest neighbors, ferromagnetic for second- and fourth-nearest neighbors, and negligible for further neighbors. The total first-neighbor interaction is probably antiferromagnetic. a non-negligible four-spin interaction is also obtained. The implication of these results for the orientational structure is discussed.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1993-10-15
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection