Peak Power Reduction in Hybrid Energy Systems with Limited Load Forecasts

Thumbnail Image
Penn collection
Real-Time and Embedded Systems Lab (mLAB)
Degree type
Hybrid Energy Storage Systems
Peak Power Reduction
Limited Forecasts
Multilevel control
Computationally light control methods
Electric vehicle power management
Computer Engineering
Electrical and Computer Engineering
Grant number
Copyright date
Related resources

Hybrid energy systems, which consist of a load powered by a source and a form of energy storage, find applications in many systems, e.g., the electric grid and electric vehicles. A key problem for hybrid energy systems is the reduction of peak power consumption to ensure cost-efficient operation as peak power draws require additional resources and adversely affect the system reliability and lifetime. Furthermore, in some cases such as electric vehicles, the load dynamics are fast, not perfectly known in advance and the on-board computation power is often limited, making the implementation of traditional optimal control difficult. We aim to develop a control scheme to reduce the peak power drawn from the source for hybrid energy systems with limited computation power and limited load forecasts. We propose a scheme with two control levels and provide a sufficient condition for control of the different energy storage/generation components to meet the instantaneous load while satisfying a peak power threshold. The scheme provides performance comparable to Model Predictive Control, while requiring less computation power and only coarse-grained load predictions. For a case study, we implement the scheme for a battery-supercapacitor-powered electric vehicle with real world drive cycles to demonstrate the low execution time and effective reduction of the battery power (hence temperature), which is crucial to the lifetime of the battery.

Date of presentation
Conference name
Real-Time and Embedded Systems Lab (mLAB)
Conference dates
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher DOI
Journal Issue
@INPROCEEDINGS{pantetal14acc, author = {Pant, Yash V. and Nghiem, Truong X. and Mangharam, Rahul}, title = {Peak Power Reduction in Hybrid Energy Systems with Limited Load Forecasts}, booktitle = {American Control Conference, 2014. Proceedings of the 2014}, year = {2014}, organization = {IEEE} }
Recommended citation