A Programmably Compliant Origami Mechanism for Dynamically Dexterous Robots

Loading...
Thumbnail Image
Penn collection
Departmental Papers (ESE)
General Robotics, Automation, Sensing and Perception Laboratory
Kod*lab
Degree type
Discipline
Subject
GRASP
Kodlab
Soft Robot Applications
Soft Robot Materials and Design
Compliant Joint/Mechanism
Electrical and Computer Engineering
Engineering
Systems Engineering
Funder
This work is supported in part by the Army Research Office (ARO) under the SLICE Multidisciplinary University Research Initiatives (MURI) Program, award #W911NF1810327 and the National Science Foundation (NSF) grant #1845339.
Grant number
License
Copyright date
Distributor
Contributor
Abstract

We present an approach to overcoming challenges in dynamical dexterity for robots through programmably compliant origami mechanisms. Our work leverages a one-parameter family of flat sheet crease patterns that folds into origami bellows, whose axial compliance can be tuned to select desired stiffness. Concentrically arranged cylinder pairs reliably manifest additive stiffness, extending the programmable range by nearly an order of magnitude and achieving bulk axial stiffness spanning 200–1500 N/m using 8 mil thick polyester-coated paper. Accordingly, we design origami energy-storing springs with a stiffness of 1035 N/m each and incorporate them into a three degree-of-freedom (DOF) tendon-driven spatial pointing mechanism that exhibits trajectory tracking accuracy less than 15% rms error within a (2 cm)^3 volume. The origami springs can sustain high power throughput, enabling the robot to achieve asymptotically stable juggling for both highly elastic (1 kg resilient shotput ball) and highly damped (“medicine ball”) collisions in the vertical direction with apex heights approaching 10 cm. The results demonstrate that “soft” robotic mechanisms are able to perform a controlled, dynamically actuated task.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2020-01-09
Journal title
IEEE ROBOTICS AND AUTOMATION LETTERS
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
preprint version
Recommended citation
Collection