Dynamic locomotion with four and six-legged robots

Loading...
Thumbnail Image
Penn collection
Departmental Papers (ESE)
General Robotics, Automation, Sensing and Perception Laboratory
Kod*lab
Degree type
Discipline
Subject
GRASP
Kodlab
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Buehler, Martin
Saranli, Uluc
Papadopoulos, D.
Contributor
Abstract

Stable and robust autonomous dynamic locomotion is demonstrated experimentally in a four and a six-legged robot. The Scout II quadruped runs on flat ground in a bounding gait, and was motivated by an effort to understand the minimal mechanical design and control complexity for dynamically stable locomotion. The RHex 0 hexapod runs dynamically in a tripod gait over flat and badly broken terrain. Its design and control was motivated by a collaboration of roboticists, biologists, and mathematicians, in an attempt to capture specific biomechanical locomotion principles. Both robots share some basic features: Compliant legs, each with only one actuated degree of freedom, and reliance on (task space) open loop controllers.

Advisor
Date of presentation
2000-08-08
Conference name
Departmental Papers (ESE)
Conference dates
2023-05-17T02:16:34.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Postprint version. Published in Proceedings of the International Symposium on Adaptive Motion of Animals and Machines, August 2000. NOTE: At the time of publication, author Daniel Koditschek was affiliated with the University of Michigan. Currently, he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.
Recommended citation
Collection