The Fast Multipole Method (FMM) for Electromagnetic Scattering Problems
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
The fast multipole method (FMM) was developed by Rokhlin to solve acoustic scattering problems very efficiently. We have modified and adapted it to the second-kind-integral-equation formulation of electromagnetic scattering problems in two dimensions. The present implementation treats the exterior Dirichlet (TM) problem for two-dimensional closed conducting objects of arbitrary geometry. The FMM reduces the operation count for solving the second-kind integral equation (SKIE) from O(n3) for Gaussian elimination to O(n4/3) per conjugated-gradient iteration, where n is the number of sample points on the boundary of the scatterer. We also present a simple technique for accelerating convergence of the iterative method: "complexifying" k, the wavenumber. This has the effect of bounding the condition number of the discrete system; consequently, the operation count of the entire FMM (all iterations) becomes O(n4/3). We present computational results for moderate values of ka, where a is the characteristic size of the scatterer.