A Metamaterial Surface for Compact Cavity Resonators
Penn collection
Degree type
Discipline
Subject
frequency selective surfaces
metamaterials
periodic surfaces
resonators
transmission line networks
waveguides
Electrical and Computer Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
We suggest an idea for miniaturization of cavities by utilizing a properly designed metamaterial thin surface inserted inside the cavities. This metamaterial surface is constituted by a thin dielectric slab on both sides of which “gangbuster” dipoles are printed. Inserting the thin slab inside a parallel-plate one-dimensional (1-D) cavity resonator has the effect of decreasing the resonant frequency. Placing the metamaterial slab at the center of a rectangular waveguide also lowers the cut-off frequency of the dominant mode of the waveguide. The corresponding dispersion curve exhibits a smooth transition from a fast-wave to a slow-wave regime and then asymptotically tends to the dispersion curve of the first TE surface-wave mode of the metamaterial slab. This suggests a natural way to conceive a 3-D compact cavity resonator by placing two perfectly electric conducting walls, a half of the wavelength of the slow-wave mode apart, inside the above rectangular waveguide. The analysis, performed by a circuit network theory and validated by a full-wave numerical analysis, provides simple formulas to predict the resonant frequency and the dispersion diagrams of these structures.