Optimal Paths in Weighted Timed Automata
Files
Penn collection
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Discipline
Subject
CPS Formal Methods
GRASP
Hybrid systems
Model checking
Optimal reachability
Timed automata
Electrical and Computer Engineering
Engineering
Systems Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
We consider the optimal-reachability problem for a timed automaton with respect to a linear cost function which results in a weighted timed automaton. Our solution to this optimization problem consists of reducing it to computing (parametric) shortest paths in a finite weighted directed graph. We call this graph a parametric sub-region graph. It refines the region graph, a standard tool for the analysis of timed automata, by adding the information which is relevant to solving the optimal-reachability problem. We present an algorithm to solve the optimal-reachability problem for weighted timed automata that takes time exponential in O(n (|δ(A)|+|wmax|)), where n is the number of clocks, |δ(A)| is the size of the clock constraints and |wmax| is the size of the largest weight. We show that this algorithm can be improved, if we restrict to weighted timed automata with a single clock. In case we consider a single starting state for the optimal-reachability problem, our approach yields an algorithm that takes exponential time only in the length of clock constraints.