Advances in the Theory of Determinantal Point Processes

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Statistics
Discipline
Subject
Determinantal Point Processes
Mathematics
Statistics and Probability
Funder
Grant number
License
Copyright date
2014-08-21T20:13:00-07:00
Distributor
Related resources
Contributor
Abstract

The theory of determinantal point processes has its roots in work in mathematical physics in the 1960s, but it is only in recent years that it has been developed beyond several specific examples. While there is a rich probabilistic theory, there are still many open questions in this area, and its applications to statistics and machine learning are still largely unexplored. Our contributions are threefold. First, we develop the theory of determinantal point processes on a finite set. While there is a small body of literature on this topic, we offer a new perspective that allows us to unify and extend previous results. Second, we investigate several new kernels. We describe these processes explicitly, and investigate the new discrete distribution which arises from our computations. Finally, we show how the parameters of a determinantal point process over a finite ground set with a symmetric kernel may be computed if infinite samples are available. This algorithm is a vital step towards the use of determinantal point processes as a general statistical model.

Advisor
Lawrence D. Brown
Date of degree
2013-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation