Self-localizing Smart Cameras and Their Applications

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Computer and Information Science
Discipline
Subject
Distributed tracking
Multi-Camera Tracking
Self-localizing Cameras
Smart Cameras
Computer Sciences
Funder
Grant number
License
Copyright date
2014-08-19T00:00:00-07:00
Distributor
Related resources
Contributor
Abstract

As the prices of cameras and computing elements continue to fall, it has become increasingly attractive to consider the deployment of smart camera networks. These networks would be composed of small, networked computers equipped with inexpensive image sensors. Such networks could be employed in a wide range of applications including surveillance, robotics and 3D scene reconstruction. One critical problem that must be addressed before such systems can be deployed effectively is the issue of localization. That is, in order to take full advantage of the images gathered from multiple vantage points it is helpful to know how the cameras in the scene are positioned and oriented with respect to each other. To address the localization problem we have proposed a novel approach to localizing networks of embedded cameras and sensors. In this scheme the cameras and the nodes are equipped with controllable light sources (either visible or infrared) which are used for signaling. Each camera node can then automatically determine the bearing to all the nodes that are visible from its vantage point. By fusing these measurements with the measurements obtained from onboard accelerometers, the camera nodes are able to determine the relative positions and orientations of other nodes in the network. This localization technology can serve as a basic capability on which higher level applications can be built. The method could be used to automatically survey the locations of sensors of interest, to implement distributed surveillance systems or to analyze the structure of a scene based on the images obtained from multiple registered vantage points. It also provides a mechanism for integrating the imagery obtained from the cameras with the measurements obtained from distributed sensors. We have successfully used our custom made self localizing smart camera networks to implement a novel decentralized target tracking algorithm, create an ad-hoc range finder and localize the components of a self assembling modular robot.

Advisor
Camillo J. Taylor
Date of degree
2012-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation