Building The Next Generation Blast Experiment

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Physics & Astronomy
Discipline
Subject
astronomy
BLAST-TNG
dust
instrumentation
interstellar medium
telescope
Astrophysics and Astronomy
Funder
Grant number
License
Copyright date
2019-04-02T20:18:00-07:00
Distributor
Related resources
Contributor
Abstract

Maps of the polarized thermal emission from dust in our galaxy hold the keys to unlock multiple astrophysical and cosmological questions. For measurements of the polarized cosmic microwave background (CMB), this dust emission is the dominant foreground. Subtracting this dust signal from the data is a critical step in the search for the weak primordial signatures of cosmic inflation. Mapping the magnetic field morphology of galactic dust can also shed light on the evolution of the giant molecular clouds which are the hotbeds of star formation in the galaxy. The Next Generation Balloon-Borne Large Aperture Submillimeter Telescope (BLAST-TNG) is a submillimeter mapping experiment which features three microwave kinetic inductance detector (MKID) arrays operating over 30% bandwidths centered at 250, 350, and 500 μm. These highly- multiplexed, high-sensitivity arrays, featuring 918, 469, and 272 dual-polarization pixels, are coupled to a 2.5 m diameter primary mirror and a cryogenic optical system providing diffraction-limited resolution of 30′′, 41′′, and 50′′ respectively. The arrays are cooled to ∼275 mK in a liquid-helium-cooled cryogenic receiver which will enable observations over the course of a 28-day stratospheric balloon flight from McMurdo Station in Antarctica as part of NASA’s long-duration-balloon program, planned for the 2018/2019 winter campaign.

Advisor
Mark J. Devlin
Date of degree
2018-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation