Computational Modeling of Nanocrystal Superlattices

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Mechanical Engineering & Applied Mechanics
Discipline
Subject
Acoustic Metamaterials
Multiscale Modeling
Nanocrystal Superlattices
One-way isolation
Phonons
Thermal Conductivity
Mechanical Engineering
Funder
Grant number
License
Copyright date
2015-11-16T00:00:00-08:00
Distributor
Related resources
Contributor
Abstract

Nanocrystal superlattices (NCSLs) are materials formed by assembly of monodisperse nanocrystal building blocks that are tunable in composition, size, shape, and surface functionalization. Such materials offer the potential to realize unprecedented combinations of physical properties, however, theoretical prediction of such properties remains a challenge. Because of the different length scales involved in these structures, modeling techniques at different scales, from ab-initio methods up to continuum models, can be used to study their behavior. This presents a challenge of understanding when and for which properties we can use computationally inexpensive continuum or mesoscopic models and when we will have to use microscopic models. Our goal here is to develop models that can predict phononic and thermal properties of different NCSLs. This includes (1) predicting bulk mechanical properties of NCSLs such as Young's and bulk modulus which are related to the behavior of low frequency acoustic phonons (2) predicting phononic band gaps through finding phonon dispersion curves of NCSL (3) predicting thermal conductivity of NCSLs. We also study the topic of one-way phononic devices that can possibly be implemented with acoustic metamaterials such as NCSLs or phononic crystals in general. This idea of one-way phonon isolation is investigated in a theoretical framework by considering systems such as acoustic waveguides and low dimensional materials.

Advisor
Jennifer R. Lukes
Date of degree
2014-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation