Drag Coefficient Characterization of the Origami Magic Ball (Inproceedings)

Loading...
Thumbnail Image
Penn collection
Lab Papers (GRASP)
Degree type
Discipline
Subject
GRASP
Origami
magic ball
drag coefficient
Engineering
Robotics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

The drag coefficient plays a vital role in the design and optimization of robots that move through fluids. From aircraft to underwater vehicles, their geometries are specially engineered so that the drag coefficients are as low as possible to achieve energy-efficient performances. Origami magic balls are 3-dimensional reconfigurable geometries composed of repeated simple waterbomb units. Their volumes can change as their geometries vary and we have used this concept in a recent underwater robot design. This paper characterizes the drag coefficient of an origami magic ball in a wind tunnel. Through dimensional analysis, the scenario where the robot swims underwater is equivalently transferred to the situation when it is in the wind tunnel. With experiments, we have collected and analyzed the drag force data. It is concluded that the drag coefficient of the magic ball increases from around 0.64 to 1.26 as it transforms from a slim ellipsoidal shape to an oblate spherical shape. Additionally, three different magic balls produce increases in the drag coefficient of between 57% and 86% on average compared to the smooth geometries of the same size and aspect ratio. The results will be useful in future designs of robots using waterbomb origami in fluidic environments.

Advisor
Date of presentation
2023-08-29
Conference name
Lab Papers (GRASP)
Conference dates
2023-05-17T16:40:35.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
@inproceedings{chen2023drag, title = {Drag coefficient characterization of the origami magic ball}, author = {Guanyu Chen and Dongsheng Chen and Jessica Weakly and Cynthia Sung}, year = {2023}, date = {2023-08-29}, urldate = {2023-08-29}, booktitle = {ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)}}
Collection