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ABSTRACT
The drag coefficient plays a vital role in the design and op-

timization of robots that move through fluids. From aircraft to
underwater vehicles, their geometries are specially engineered so
that the drag coefficients are as low as possible to achieve energy-
efficient performances. Origami magic balls are 3-dimensional
reconfigurable geometries composed of repeated simple water-
bomb units. Their volumes can change as their geometries vary
and we have used this concept in a recent underwater robot de-
sign. This paper characterizes the drag coefficient of an origami
magic ball in a wind tunnel. Through dimensional analysis,
the scenario where the robot swims underwater is equivalently
transferred to the situation when it is in the wind tunnel. With ex-
periments, we have collected and analyzed the drag force data. It
is concluded that the drag coefficient of the magic ball increases
from around 0.64 to 1.26 as it transforms from a slim ellipsoidal
shape to an oblate spherical shape. Additionally, three different
magic balls produce increases in the drag coefficient of between
57% and 86% on average compared to the smooth geometries
of the same size and aspect ratio. The results will be useful
in future designs of robots using waterbomb origami in fluidic
environments.
Keywords: Origami, magic ball, drag coefficient

NOMENCLATURE
𝐶𝑑 Drag coefficient
𝐷 Drag [N]
𝐴𝑎 Cross sectional area of samples [m2]
𝑣𝑎 Wind speed [m/s]
𝑣𝑤 Swimming speed of the robot [m/s]
𝜌𝑎 Density of air at 25 ◦𝐶 [1.184 kg/m3]
𝑅𝑒 Reynolds number
𝑙𝑎 Length of the scaled-down samples [mm]
𝑙𝑤 Length of the regular-sized magic ball [mm]
𝜈𝑎 Kinematic viscosity of air at 25 ◦𝐶 [1.56 ×10−5 m2/s]
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𝜈𝑤 Kinematic viscosity of water at 25 ◦𝐶 [8.92 ×10−7 m2/s]
𝛼 Scale factor
𝑑𝑎 Diameter of the scaled-down samples [mm]
𝑑𝑤 Diameter of the regular-sized samples [mm]
𝑚 Number of rows of waterbomb units on the magic ball

pattern
𝑛 Number of columns of waterbomb units on the magic

ball pattern
𝑠𝑎 Side length of waterbomb units on the scaled-down

magic ball pattern [mm]
𝑠𝑤 Side length of waterbomb units on the regular-sized

magic ball pattern [mm]
𝑓𝑝𝑡𝑙 Factor to convert the length in pixel to the real length in

mm
𝐿𝑝 A set that stores the length of the regular-sized magic

ball in pixels
𝑊𝑝 A set that stores the diameter values of the regular-sized

magic ball in pixels
𝑃𝑣 Pressure reading of Dwyer Mark II Manometer [inches

of water]
𝑙𝑤𝑟𝑒 𝑓 Reference length of the regular-sized magic balls [mm]
𝑙𝑎𝑟𝑒 𝑓 Reference length of the scaled-down magic balls [mm]
Δ𝑙 Length displacement [mm]
𝛼𝑐 Corrected scale factor
𝑐𝑖 Constant coefficients of the ellipse equation (𝑖 = 1, 2)
𝑑𝑐 Diameter of the end caps of the samples [mm]
𝑙𝑐𝑎 Longitudinal length of each stripe during the

polygonalization process of the ellipsoid fabrication
[mm]

𝑙𝑒 Distance from one end to a certain position along the
length of the corresponding magic ball [mm]

ℎ𝑎 Width of each stripe during the polygonalization process
of the ellipsoid fabrication [mm]

𝑝 Number of stripes during the polygonalization process of
the ellipsoid fabrication

x, y Coordinates in the Cartesian coordinate system
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1. INTRODUCTION
Origami-inspired fabrication approaches enable 3D struc-

tures to be constructed quickly and easily [1–5] by folding flat
sheets of material. Besides the reconfigurability, origami robots
can be easy to store, transport, and shape into and interact with an
object’s surface due to their lightweight, thin thickness, and high
flexibility [6]. The origami magic ball is one example of origami
patterns that have been used in a number of robotic designs.
The magic ball is composed of multiple repeated patterns called
waterbomb units with a six-crease base [7] to form a revolved
body. Once folded, it is able to continuously transform from an
elongated “ellipsoidal” shape to a shorter “spherical” and even a
flattened “wheel” shape. Because of its high transformability, the
magic ball has been used in applications as varied as a deformable
wheel [8], an origami swimmer [9], and a worm robot [10].

In previous work, we have taken advantage of the origami
magic ball’s ability to change geometry and volume to design an
underwater robot that generates jets to propel itself through the
water [9]. The origami magic ball converts length change into
volumetric change, enabling a simple actuation system that uses
a DC motor and a single tendon to produce a jet. The swimmer
draws in water slowly by contracting in length and expanding its
magic ball body, and it then ejects the water very fast under the
effect of the rubber band around it for propulsion. We constructed
a proof-of-concept that demonstrated that the robot can swim
untethered at a speed of 6.7 cm/s (0.2 body lengths/s). However,
the design was unoptimized, and we expect that properties such
as the drag, thrust, and resulting energy efficiency of the robot
will be heavily influenced by the geometry of the body. Thus,
in this work, we characterize the drag of the magic ball forming
the robot’s body so that in the future, we can enhance the robot’s
energy efficiency by modifying the pattern design of the magic
ball skin and applying proper control methods.

The drag coefficient is a significant factor in the process of
designing and developing robots that travel through air or water,
such as UAVs [11], flying robots [12], and underwater robots
[9]. In general, drag is the force opposing the forward motion
of the robot, and thus reducing drag is key to maximizing a
robot’s locomotive efficiency. Drag can be controlled using a
number of factors, primarily the geometry of the vehicle. In
[13], for example, the influence of the drag coefficient on the
locomotion speed of the robotic fish was studied by adjusting the
fin amplitude. The work in [14] proposed an energy prediction
model based on drag coefficients and other energy-consumption-
related components and demonstrated that this model was able
to efficiently provide assistance in the analysis of the energy
consumption characteristics of mobile robots. The work in [15]
derived an inverse dynamics control law based on the air drag
force and demonstrated the significance of considering the air
drag force for lightweight higher-speed robots.

The drag coefficient of a variety of origami patterns has been
characterized. Zhang et al. [16] have studied the aerodynamic
drag of the Miura-ori in different deployable configurations. In
[17], kirigami patterns have been incorporated into origami struc-
tures comprised of thin-film materials to build drone guards, and
the drag of the structures has been measured to investigate the
aerodynamic properties of the deformable structures. Cozmei et

al. [18] have explored the use of two novel origami designs, Worm
and Dino, as active aerodynamic control surfaces based on drag
values, and they found that the designs had excellent structural
rigidity and folding characteristics under aerodynamic loading.
Tolman et al. [19] have developed a deployable aerodynamic lo-
comotive fairing based on thick origami and implemented a Com-
putational Fluid Dynamics (CFD) simulation to demonstrate the
drag reduction of the fairing. Marzin et al. [20] have discovered
that shape reconfiguration through origami folding sets an upper
limit on drag by focusing on a single waterbomb cell as a generic
case. However, the drag coefficient of origami magic balls has
not been characterized yet.

In this paper, we present an experimental drag coefficient
characterization for origami magic balls, with a focus on the ge-
ometries and fluid conditions of interest for our swimming robot.
We conduct load tests in a wind tunnel to evaluate the drag on
the robot for a number of different geometries (including differ-
ent resolutions and lengths of the magic ball), measured at the
average speed at which the robot swims. The results demonstrate
that the drag coefficient of the magic ball increases from 0.64 to
1.26 as it transforms from the ellipsoidal state to the spherical
state, but the drag coefficient remains generally the same over
different pattern resolutions. We also compared the magic ball to
smooth ellipsoids of the same size and aspect ratio, showing that
the magic ball produces an increase of 57-86% in drag coefficient
compared to the smooth surfaces.

The rest of the paper is organized as follows. In Sect. 2, a brief
overview of our robot and its relevant parameters are introduced.
In Sect. 3, we discuss scaling laws and our strategy for wind
tunnel tests. In Sect. 4, we introduce the experimental setup,
the fabrication process of the magic ball samples and ellipsoid
samples, and the experimental procedure. Then, we present and
discuss the results of the drag and drag coefficient of the samples.
In Sect. 5, we conclude and discuss limitations and future work.

2. ORIGAMI MAGIC BALL AND RELEVANT PARAMETERS
2.1 Overview of Origami Magic Ball

In this paper, we focus on the magic ball origami pattern.
The magic ball is a tessellation of waterbomb units, as shown in
Fig. 1 (left). The shape of the folded magic ball is influenced by
three main parameters: 𝑚, the number of rows of units; 𝑛, the
number of columns of units; and 𝑠𝑤, the side length of one unit.
The pattern in Fig. 1 has 4 rows and 5 columns of units, so we
call it a 4 × 5 magic ball pattern.

After folding all the units and connecting the sides of the
pattern, the magic ball pattern can be turned into a dimpled
ellipsoid shape which is called the magic ball, shown in Fig. 1
(right). For convenience, the magic ball folded by𝑚×𝑛magic ball
pattern is called 𝑚 × 2𝑛 magic ball because one magic ball takes
two magic ball patterns to fold [9]. The structure has the ability
to continuously deform even after folding, converting lengthwise
contraction into diameter expansion, and vice versa. We call the
length of the folded magic ball 𝑙𝑤 and the diameter at its equator
𝑑𝑤. Sect. 4.1 provides more information about the relationship
between these two variables as the magic ball deforms.

In our previous work [9], we found that the ratio 𝑚/(2𝑛) ≈
2/5 can generally work well to produce a large volume change
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without buckling. Thus, in this paper, we primarily focus on the
4 × 10, 5 × 12, and 6 × 15 magic balls, keeping the total surface
of the balls constant.

2.2 Scaling the Ball for Drag Tests
Our full-scale origami swimmer [9] uses two 4 × 5 magic

ball patterns with 𝑠𝑤 = 88 mm, resulting in a folded structure
with lengths between 𝑙𝑤 = 230 mm and 𝑙𝑤 = 170 mm and diam-
eters approximately between 𝑑𝑤 = 190 mm and 𝑑𝑤 = 260 mm.
However, this structure would be too large for our wind tunnel,
and thus we scale our magic balls down in size.

Let 𝛼 = 0.5 be the geometric scale factor used for our ex-
perimental tests. Our drag measurements were then conducted
on magic balls with unit length 𝑠𝑎 = 𝛼𝑠𝑤 compared to the orig-
inal swimmer. Since the 3D geometry of the folded ball is fully
captured by its resolution 𝑚 and 𝑛, its unit length 𝑠𝑤, and its
folded length 𝑙𝑤, if the length of the folded structure is also
scaled accordingly, then the geometry of the scaled ball should
be equivalent. We use the subscript 𝑎 to denote the dimensions of
the scaled ball; that is, 𝑙𝑎 is the length of the scaled-down magic
ball, and 𝑑𝑎 is its diameter. To ensure the shape consistency
between the regular-sized magic balls and scaled-down ones, the
length-diameter profile of the regular-sized ones is discovered in
Sect. 4.1.

3. THEORY OF CALCULATING DRAG COEFFICIENT USING
CONVERTED WIND SPEED

The drag coefficient is a dimensionless number used by en-
gineers to model the effects of shape and flow conditions on drag
[21]. If an object moves with a velocity of 𝑣𝑎 in a flow that has a
density of 𝜌𝑎, and if the frontal area of the object that is perpen-
dicular to the flow is 𝐴𝑎 and the drag force acting on the object is
𝐷, then the drag coefficient 𝐶𝑑 can be calculated using Eq. (1).

𝐶𝑑 =
2𝐷

𝜌𝑎𝐴𝑎𝑣
2
𝑎

(1)

The drag coefficient of an object can be affected by the Reynolds
number, the Mach number, the surface roughness of the material
used to fabricate the object, the sample geometry [21], and the
Froude number [22]. The Reynolds number is the ratio of inertial
forces to viscous forces. When the Reynolds number is low, the
drag coefficient is typically high since the laminar flow is domi-
nated. When the Reynolds number is high, the drag coefficient is
typically low due to the prevalence of turbulent flow. The Mach
number is the ratio of the velocity of an object to the sound speed.
At a low Mach number, the drag coefficient is not significantly
affected by changes in Mach number. Surface roughness refers to
the deviations or irregularities in the surface texture of a material.
At a low Reynolds number, a high surface roughness can lead to a
high drag coefficient since the flow is very sensitive to the distur-
bance caused by the friction between the object and the fluid. For
the shape of an object, streamlined shapes can have a lower drag
coefficient since they can minimize the formation of vortices. On
the contrary, blunt shapes can have a higher drag coefficient since
more turbulence is likely to be generated. The Froude number
expresses the ratio of inertial forces to gravitational forces in a
flow. According to [22], if the depth of an ellipsoid is four times

longer than its diameter, the effect of the Froude number can be
ignored.

In our experiment, we measure the drag force of the scaled-
down samples in a wind tunnel due to the limited size of the wind
tunnel. Then, Eq. (1) is used to calculate the drag coefficient of
our samples. The parameter 𝜌𝑎 in our experiment is the density
of air, 𝐴𝑎 is the cross-sectional area of our scaled-down samples
that is perpendicular to the wind, 𝑣𝑎 is the wind speed in the
wind tunnel, and 𝐷 is the drag force acting on our samples. The
cross-sectional area of the scaled-down magic balls 𝐴𝑎 can be
calculated by approximating the section as a circle with a diameter
of 𝑑𝑎, so 𝐴𝑎 ≈ 𝜋𝑑2

𝑎/4. Among these parameters, 𝜌𝑎 at 25◦𝐶
is 1.184 kg/m3, and 𝐷 is obtained through drag measurement.
Hence, it is necessary to figure out 𝑣𝑎 to further calculate the drag
coefficient.

Since the robot is intended to swim underwater but the drag
is measured in the air, the swimming speed 𝑣𝑤 is converted to
the wind speed 𝑣𝑎 with dimensional analysis to reflect the real
scenario. To ensure the consistency of the drag coefficient in
different fluids, the influencing factors of the drag coefficient
should be well controlled. For our robot, the maximum swimming
speed of our robot is approximately 0.067 m/s [9], which is far
slower than the sonic speed. Thus, the Mach number is not
considered. As an estimate, the swimming speed 𝑣𝑤 is chosen
to be 0.1 m/s since it has the same order of magnitude as 0.067
m/s. Since the working conditions can be far below the water
surface the most of time, the Froude number is not considered in
the speed conversion, either. Furthermore, since the samples for
the drag measurement are fabricated using the same material and
folded into the same shape as the robot that swims underwater, the
influence of the surface roughness and shape can be controlled.
Therefore, only the Reynolds number Re needs to be considered.

𝑅𝑒 =
𝑣𝑎𝑙𝑎

𝜈𝑎
=
𝑣𝑤𝑙𝑤

𝜈𝑤

𝑣𝑎 =
𝜈𝑎𝑙𝑤

𝜈𝑤𝑙𝑎
𝑣𝑤 =

𝜈𝑎𝑣𝑤

𝜈𝑤𝛼

(2)

where 𝜈𝑤 and 𝜈𝑎 are the kinematic viscosity of water and air,
respectively, 𝑙𝑤 and 𝑙𝑎 are the characteristic lengths of the regular-
sized robot and the scaled-down samples, respectively, and 𝛼 =

𝑙𝑎/𝑙𝑤 is the geometric scale factor. For a scale factor of 𝛼 = 0.5,
and the wind speed required for our experiments can be obtained
as 𝑣𝑎 = 3.5 m/s.

4. EXPERIMENTS ON ORIGAMI MAGIC BALLS AND
ELLIPSOIDS

4.1 Extraction of Length-Diameter Profile
To ensure the shape consistency between the regular-sized

robot and the scaled-down samples, the length-diameter ratios of
the three regular-sized magic balls (4×10, 5×12, and 6×15 magic
balls) are extracted using computer vision. Four red markers are
attached to the top, bottom, left, and right sides of the regular-
sized magic balls, as shown in Fig. 2. Rubber bands are fixed
around the rows above and below the equator to replicate the
working conditions of the real robot. Then, the magic balls are
compressed once using an MTS machine (Criterion C43.504 with
50 kN load cell) with a compression displacement of 60 mm and
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Diameter 𝑑𝑤

Length 𝑙𝑤

FIGURE 1: THE ORIGAMI MAGIC BALL IS A WATERBOMB TESSELLATION (LEFT) WITH m ROWS AND n COLUMNS OF SQUARE WATER-
BOMB UNITS. WHEN THE LEFT AND RIGHT SIDES OF THE PATTERN ARE GLUED TOGETHER, THE PATTERN FOLDS INTO A TUBULAR
SHAPE (RIGHT) OF LENGTH lw AND OUTER DIAMETER dw . THE MAGIC BALL ON THE RIGHT HAS 4 ROWS AND 10 COLUMNS, AND IT IS
FABRICATED BY GLUING TWO 4 × 5 MAGIC BALL PATTERNS (LEFT) TOGETHER. IMAGES MODIFIED FROM [9].

a compression rate of 1 mm/s after it is pre-compressed 10 times.
The final compression is recorded by a Nikon digital camera
D3400 with a resolution of 1080p and a frame rate of 60 fps.
The video then is processed with the hue filter in Python and the
central pixel positions of the four markers are determined in each
frame using opencv. Finally, the length of the magic ball in pixels
is calculated by the pixel positions of the top and bottom markers,
while the diameter of the magic ball in pixels is calculated by the
pixel positions of the left and right markers. Since the magic
balls are compressed by 60 mm, the factor that converts the pixel
length to the real length in mm, 𝑓𝑝𝑡𝑙 can be obtained using

𝑓𝑝𝑡𝑙 =
60 mm

𝑀𝑎𝑥{𝐿𝑝} − 𝑀𝑖𝑛{𝐿𝑝}
(3)

where 𝐿𝑝 is a set that stores all lengths in pixels in all frames,
𝑀𝑎𝑥{𝐿𝑝} and 𝑀𝑖𝑛{𝐿𝑝} are the maximum and the minimum
value in 𝐿𝑝 , respectively, and 𝑓𝑝𝑡𝑙 is the real length in mm per
pixel. Thus, the real length of the magic ball, 𝑙𝑤 in all frames
can be calculated by 𝑓𝑝𝑡𝑙𝐿𝑝 . Similarly, the real diameter of the
magic ball, 𝑑𝑤 in all frames can be calculated by 𝑓𝑝𝑡𝑙𝑊𝑝 where
𝑊𝑝 is a set that stores all diameters of the magic ball in pixels
in all frames. Figure 3 shows the results of this process, along
with a third-order polynomial fit. These values are used in the
following fabrication process.

FIGURE 2: 6 × 15 MAGIC BALL WITH MARKERS AND RUBBER
BANDS IN THE MTS MACHINE

4.2 Fabrication of Samples
4.2.1 Magic Ball Samples. The scaled-down waterbomb

samples are fabricated out of 0.076-mm-thick PET (polyethylene
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FIGURE 3: DIAMETER VS. LENGTH DISPLACEMENT FOR
REGULAR-SIZED MAGIC BALLS (FULL LENGTH: 234.46 MM FOR
4 × 10 MAGIC BALL, 249.11 MM FOR 5 × 12 MAGIC BALL, AND
231.64 MM FOR 6 × 15 MAGIC BALL)

terephthalate) sheets, as shown in the first row of Fig. 4. The
patterns are cut into two pieces on a PLS 4.75 (Universal Laser
System) flatbed laser cutter. The boundaries of the patterns are
directly cut and the folds are perforated at 9 dots per cm. The
two sides of the two pieces of patterns are taped together with 3M
1522 tape and the overlapping triangles on the top and bottom
of the pattern shown in Fig. 1 (left) are sealed using 3M 467MP
tape, after which the patterns are folded manually into a magic
ball.

The regular-sized magic balls can be compressed by 60 mm
from the initial state, so the length displacements of the scaled-
down samples used in the experiment are 0, 6, 12, 18, 24, and
30 mm. When the length displacement is 0 mm, the samples
are in the ellipsoidal state or initial state, and they are in the
spherical state when the displacement is 30 mm. The resulting
geometries for the samples are shown in Fig. 5. Due to fabrication
inconsistencies, the length of the scaled-down samples is slightly
shorter than half of the length of the actual regular-sized ones by
up to 4 mm. To ensure their shape consistency as their lengths
decrease from their individual reference lengths (when the length
displacement is zero), we control the length displacement instead
of the length. The reference lengths of the 4 × 10, 5 × 12, and
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FIGURE 4: EXPERIMENTAL SAMPLES IN ELLIPSOIDAL STATE

(a) Magic ball samples

(b) Ellipsoid samples

FIGURE 5: STATES OF SAMPLES TO BE TESTED (ELLIPSOIDAL
STATE ON THE LEFT AND SPHERICAL STATE ON THE RIGHT)

6 × 15 regular-sized magic balls from computer vision, 𝑙𝑤𝑟𝑒 𝑓 are
234.46 mm, 249.11 mm, and 231.64 mm, while the lengths of
the corresponding scaled-down magic balls, 𝑙𝑎𝑟𝑒 𝑓 are 113 mm,
109 mm, and 106 mm. Note that the length reported here is
the length of the magic ball without considering end caps. The
reference length obtained from computer vision is slightly longer
than the actual length of the regular-sized magic balls, but their
length-diameter ratios are verified to be typically the same as each
other by taking a few states during the transformation process of
the regular-sized magic ball since the diameter obtained from
computer vision is also larger. Therefore, we used a corrected
scale factor 𝛼𝑐 = 𝑙𝑎𝑟𝑒 𝑓 /𝑙𝑤𝑟𝑒 𝑓 to convert the diameter obtained
from computer vision to the desired diameter of the scaled-down
samples.

The samples are fixed between two caps, which we use to
control the length and fix the sample to the load measurement
setup. The front cap is laser-cut from a 3.175-mm-thick acrylic

(a) Pattern used to fold polygonized ellipsoid. Two patterns are
glued together horizontally to form a single ellipsoid.

𝑑𝑐

𝑑𝑎
𝑙𝑎

ℎ𝑎

𝑙𝑐𝑎

𝑙𝑒

(b) Geometric parameters of the ellipsoid

FIGURE 6: DIAGRAM OF THE POLYGONIZED ELLIPSOID AND THE
RELATED PARAMETERS

board. The back cap is fabricated by 3D printing with PLA. Two
holes on the extrusion of the back cap are used to mount the
samples on the beam of the experimental setup using bolts and
nuts as shown in Fig. 7b. Since the thickness of the material is
not scaled down along with the geometry, it is possible that the
deformation of the magic ball as it is compressed is not exactly
the same as the regular-sized version. To find the corresponding
diameter 𝑑𝑎 of the scaled-down samples, we scale the diameters of
the regular-sized magic balls obtained in Sect. 4.1 when the length
displacement Δ𝑙 is 0, 12, 24, 36, 48, and 60 mm, respectively.
Thus, the diameter 𝑑𝑎 can be obtained by 𝑑𝑎 = 𝛼𝑐𝑑𝑤. Then, a
fishing line loop is used to constrain the diameter of the sample
to the required diameter to match the regular-sized sample. The
fishing line loop is fabricated by cutting a section of the fishing
line to a length of 𝑑𝑎 and attaching two ends with super glue.
The length displacement of the sample is adjusted by adding or
removing 6-mm-long standoffs inside the sample between the two
end caps.

4.2.2 Ellipsoidal Samples. To investigate the influence of
the complex surface geometry formed by waterbomb units of
the magic balls on the drag coefficient, ellipsoids with the same
material, size, and length-diameter relationship as the magic balls
are also fabricated. For each length and resolution of the magic
ball sample, an ellipsoid is constructed to match the sample’s
length and diameter. The ellipsoid is made by polygonizing the
surface of an ellipsoid with two flat ends into ten stripes along
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the major axis, as shown in Fig. 6a, since it is difficult to directly
fold a sheet into an ellipsoid. Figure 6b shows the geometric
parameters of the polygonized ellipsoid. To design the proper
shape of each stripe, the profile of the width of the stripes ℎ𝑎
over the longitudinal length of the stripes 𝑙𝑐𝑎 is derived below.
Assume that the equation of the elliptic sectional shape of the
ellipsoid obtained by cutting vertically along the diameter of the
cap 𝑑𝑐 in the 2D (x-y) Cartesian coordinate system is:

𝑥2

𝑐2
1
+ 𝑦2

𝑐2
2
= 1 (4)

with boundary constraints:

𝑦(𝑥 = 0) = 𝑑𝑎

2
𝑦

(︃
𝑥 =

𝑙𝑎

2

)︃
=

𝑑𝑐

2
(5)

where 𝑐1 and 𝑐2 are constant coefficients of the ellipse equation,
𝑑𝑐 is the diameter of the end cap, and the origin of the coordinate
system is fixed at the center of the ellipse with the x-axis pointing
downwards along the major axis and the y-axis pointing horizon-
tally along the minor axis. Therefore, it can be calculated that

𝑐2
1 =

𝑙2𝑎

4
[︃
1−

(︂
𝑑𝑐
𝑑𝑎

)︂2
]︃ and 𝑐2

2 =

(︂
𝑑𝑎
2

)︂2
. The horizontal width of each

strip ℎ𝑎 is obtained by:

ℎ𝑎 (𝑙𝑒) = 2𝑦
(︃
𝑥 = − 𝑙𝑎

2
+ 𝑙𝑒

)︃
sin

(︃
𝜋

𝑝

)︃
(6)

where 𝑙𝑒 is the distance from one end to a certain position along
the length of the corresponding magic ball 𝑙𝑎, and 𝑝 is the number
of strips to form the polygonized ellipsoid.

𝑙𝑐𝑎 (𝑙𝑒) =
∫ − 𝑙𝑎

2 +𝑙𝑒

− 𝑙𝑎
2

⌜⃓⃓⃓⃓⎷
1 +

⎡⎢⎢⎢⎢⎣
𝑑

𝑑𝑥

(︄
𝑐2

2 − 𝑥2
𝑐2

2

𝑐2
1

)︄ 1
2

cos
(︃
𝜋

𝑝

)︃⎤⎥⎥⎥⎥⎦
2

𝑑𝑥 (7)

where 𝑙𝑐𝑎 is the longitudinal length of each stripe. Finally, ℎ𝑎
and 𝑙𝑐𝑎 along 𝑙𝑎 are calculated in MATLAB 2021A, and a fourth-
order polynomial is used to couple these two parameters. Then,
the pattern is drawn in SolidWorks 2022 using equation-driven
curves.

The boundaries of the pattern are cut as solid lines on the
PLS 4.75 (Universal Laser System) flatbed laser cutter. Then,
the curved edges of the adjacent stripes are glued together using
3M 1522 tape in the same way as for the magic ball samples.
The tape is affixed to the inner side of the ellipsoid to reduce
the influence of wrinkles at the connection between two adjacent
stripes. The ellipsoid samples fabricated are shown in the second
row of Fig. 4, and their transformations are shown in Fig. 5b.

The front and end caps are the same as those used for the
scaled-down magic balls. However, no fishing lines or standoffs
are used for ellipsoids since they can self-support their shapes.
Eighteen ellipsoids are made to correspond to the 6 states of the 3
different magic balls. The ellipsoid that corresponds to an 𝑚 × 𝑛

magic ball is called 𝑚 × 𝑛 ellipsoid in the following.

4.3 Setup Description
The AEROLAB Educational Wind Tunnel (EWT) shown in

Fig. 7a is used in the experiment. A fan is located on one end of
the wind tunnel, and it can take in air from the other end. There is
a chamber in the middle where samples can be placed and tested
shown in Fig. 7b. Next to the chamber is a console panel used to
turn on or off the fan and adjust the wind speed. The wind speed
can be obtained by reading the pressure change due to the flow
(𝑃𝑣 in inches of water) using a Dwyer Mark II Manometer. Using
the datasheet [23] and assuming a temperature of 25 ◦C and a
pressure of 1 atm, the conversion to wind speed can be computed
as

𝑣𝑎 = 20.4952
√︁
𝑃𝑣 (8)

In order to measure the drag force, we use the load cell setup
shown in Fig. 7c. The setup consists of a load cell assembly, a
base, a circuit, and a beam for attaching the samples. We use
two Sparkfun 10 kg load cells (SEN-13329) with an error of
0.05%FS, rigidly coupled to prevent friction via machined alu-
minum brackets. The vertical load cell is for drag measurements,
while the horizontal one is for lift measurements (not used). The
base consists of two 6.35-mm-thick acrylic plates sized to fit the
opening at the top of the wind tunnel. A 3D-printed connector
attaches the beam to the load cell. The beam has a length of 220
mm and a thickness of 1.6 mm, and it is manufactured by waterjet
cutting a steel sheet. The two holes on the low end of the beam
allow the samples to be mounted.

Load measurements are taken using an Arduino Uno and
two Sparkfun HX711 load cell amplifiers (SEN-13879). The
amplified load signal is uploaded from the Arduino Uno to a
connected laptop using Serial communications over USB with a
baud rate of 57600. After calibrating the load cells, we find the
root mean square error (RMSE) of the load cell for drag is about
0.09 g. Since the samples are not made perfectly symmetrically, a
lift force can be generated in the experiment. We manually exert
some force in the lift direction as disturbance and find out the
maximum error between the readings of the drag and the ground
truth. The results in Table 1 show that even with a disturbance
of 11.06 g in magnitude, the maximum error is only 0.38 g.
Additionally, most of the maximum error lies within the range of
0.2 to 0.3 g with a disturbance smaller than 7 g in magnitude.

TABLE 1: MAXIMUM ERROR OF DRAG WITH LIFT DISTURBANCE

True drag (g) Disturbance Maximum
range (g) error (g)

0.0 [−5.94, 7.00] 0.21
2.2 [−11.06, 7.98] 0.38
4.4 [−7.00, 5.73] 0.17
6.7 [−8.22, 4.64] 0.25
8.9 [−5.81, 4.32] 0.26
11.1 [−5.54, 4.37] 0.22
13.3 [−7.97, 5.10] 0.32

4.4 Experimental Procedures
The force balance setup is placed upon the chamber of the

wind tunnel with one end of the vertical beam inside the chamber.
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FIGURE 7: EXPERIMENTAL EQUIPMENT

The measurement process starts with a preliminary test to obtain
the drag of only the beam and ensure that it is negligible compared
with the drag of the samples. After connecting the Arduino Uno
to a laptop, the data is collected from the load cells with the wind
tunnel off. After the data readings stabilize, all prior data are
cleared and only the incoming data are recorded for 40 s. The
recorded data are saved before turning on the wind tunnel and
adjusting the wind speed to 3.5 m/s. Then, the new data are
recorded for 40 s. After that, the wind tunnel is turned off. This
is the end of the preliminary test.

Following this procedure, data is collected for each of the
samples. For each sample, the standoffs with full length are at-
tached inside one of the scaled-down magic balls and the fishing
line loop with the corresponding diameter is put around the sam-
ple. Then, the magic ball is attached to the vertical beam with
bolts and nuts. At this time, the magic ball is in the ellipsoidal
state. Similar to the base procedure, the data are recorded for 40 s
and saved before turning on the fan and adjusting the wind speed
to 3.5 m/s. The new data then are also recorded for 40 s. After
that, the wind tunnel is turned off, and the magic ball is detached.
This is one trial of the formal test for each magic ball sample.
At the start of the next trial, one of the 6-mm-long standoffs is
removed to compress the magic ball by 6 mm into a new state.
The old fishing line loop is replaced by a new loop with a new
diameter. After that, the sample with the new state is reattached
to the beam. The above procedure except for the preliminary
test is repeated for all magic ball samples with different states.
Then, the procedure is repeated for the ellipsoid samples. The
only difference between the test on the magic ball samples and
ellipsoid samples is that no standoffs or fishing line loops are used
in ellipsoid samples since we constructed a different ellipsoid to
reflect the magic balls at every discrete state. Therefore, instead
of removing standoffs to change the state, we directly attach dif-
ferent ellipsoids in each trial. In the experiment, all the data are
collected only after the readings stabilize, which can be observed
using a serial monitor.

4.5 Results of Drag and Drag Coefficient and Analysis
The drag force for each trial is obtained by subtracting the

mean of the data collected without wind from the 40-s data with
the wind. The whole experimental procedure is implemented
once for each trial. Fig. 8 shows the results. The dots represent
the mean value of the drag force in each trial over the 40-s trial.
The drag of the vertical beam is less than 0.1 g, which is negligible
compared to the drag of the samples. In addition, since most of the
lift disturbance in the experiment is less than 1 g and the maximum
disturbance is only about 2.3 g in magnitude, the influence of the
lift disturbance also has a negligible effect on the readings of the
drag.

The drag of the magic balls and the ellipsoids both increase
as they change from the ellipsoidal state to the spherical state.
The magic ball patterns increase from around 2.9 g to 10.13 g,
while the ellipsoidal samples increase from around 1.8 g to 5.93
g. The drag of magic balls in all states is thus about 1.36 to
2.33 times greater than that of the ellipsoids. For magic balls,
the 4 × 10 magic ball reaches the global highest drag of 11.91
g as it approaches the spherical state, while the 5 × 12 magic
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FIGURE 8: COMPARISON OF DRAG. mb:=MAGIC BALL
el :=ELLIPSOID (MAXIMUM STANDARD DEVIATION IS 0.167 g

FOR MAGIC BALLS, 0.117 g FOR ELLIPSOIDS)

ball has the minimum value of drag in most of the states. In the
spherical state, the drag of the 4 × 10 magic ball is 1.34 times
higher than that of the 5 × 12 magic ball which is the smallest.
In the ellipsoidal state, however, the 4 × 10 magic ball has the
minimum drag value and the 6 × 15 magic ball has a maximum
drag that is 1.57 times higher than that of the 4 × 10 magic ball.
For the ellipsoids, similarly, the 4 × 10 ellipsoid has the highest
drag of 7.25 g and the 5 × 12 magic ball has the smallest drag in
all states. In the spherical state, the drag of the 4 × 10 ellipsoid
is 1.58 times higher than that of the 5 × 12 ellipsoid which is
the smallest. In the ellipsoidal state, the 6 × 15 magic ball has a
maximum drag that is 2.18 times higher than that of the 5 × 12
magic ball.

The drag coefficient, which has been obtained using Eq. (1)
for all samples, is illustrated in Fig. 9. The drag coefficient of the
magic balls with the three different pattern resolutions is generally
similar for each state, varying by less than 37.3% between magic
balls of different resolutions. In all cases of the magic balls, the
drag coefficient increases from around 0.64 in the ellipsoidal state
to slightly more than 1.26 in the spherical state. When the length
displacement is 12, 18, and 30 mm, the drag of 4 × 10 magic
ball is the highest, but the drag coefficient is not the greatest.
The reason is that the increase in the sectional area of the 4 × 10
magic ball is large in these states, as shown in Fig. 10. Note
that the sectional area of the magic balls and ellipsoids in the
same state is identical. The drag coefficient of the ellipsoids rises
from about 0.39 in the ellipsoidal state to 0.73 in the spherical
state. The ratio of the change in the drag coefficient between the
4 × 10, 5 × 12, and 6 × 15 magic balls and the corresponding
ellipsoids to the drag coefficient of the corresponding ellipsoids
in each state are calculated, respectively. By taking the average
of those ratios, we find that the complex surface geometry of the
magic ball roughly leads to a 57%, 86%, and 61% increase in
the drag coefficient for the three pattern resolutions on average,
compared to the corresponding ellipsoids with a smooth surface.

FIGURE 9: COMPARISON OF DRAG COEFFICIENT. mb:=MAGIC
BALL el :=ELLIPSOID (MAXIMUM STANDARD DEVIATION IS 0.0175
FOR MAGIC BALLS, 0.0178 FOR ELLIPSOIDS)

The complex surface geometry will disrupt the flow, making the
boundary layer thicker and more turbulent. Besides, the complex
surface can also generate vortexes and eddies. These effects can
probably explain why the drag coefficient of magic balls is larger
than that of the smooth ellipsoids.

The drag in this paper can be compared across the magic
balls with different resolutions, since the area of PET sheets used
to fabricate the scaled-down magic balls is kept to be constant and
the aspect ratio of the sheets of the patterns is practically identi-
cal. In this case, the magic balls with different resolutions have
similar geometry, and the main difference is the different num-
bers of waterbomb units. With an adequately increasing number
of waterbomb units on each sheet, the size of each unit could
become smaller and the magic ball will become more smooth.
Since the patterns do not have a great number of units and the
number of units does not vary dramatically across different pat-
tern resolutions in this experiment, the effect of the smoothness
on the drag coefficient cannot be obviously observed.

In this paper, the rigid standoffs are used in the drag char-
acterization to adjust the length displacement of the scaled-down
magic balls. In this case, the body length is strictly controlled, and
the corresponding states of the real robot are represented. Nev-
ertheless, since the flexible fishing line is used to hold the body
length in the real robot, the length of the robot could slightly
change, leading to a shape change of the robot when there are ex-
ternal disturbances. However, this effect could be negligible since
the fishing line is flexible only within a very small strain range.
Therefore, the scaled-down samples can effectively represent the
real scenario of the robot.

Finally, the drag coefficient of the magic balls is large com-
pared to that of the smooth ellipsoids and indicates that future
versions of our robot may benefit from a smooth skin. The
origami magic ball, which directly converts length change into
volume change could remain a skeleton of the resulting robot.
At the same time, however, other factors in addition to drag will
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FIGURE 10: COMPARISON OF SECTIONAL AREA OF BOTH MAGIC
BALLS AND ELLIPSOIDS

affect the energy efficiency and controllability of the robot. In
particular, the compliance of the robot’s body will have an effect
on its thrust and its drag when it is in the water. As the robot is
moving forward, the force from the surrounding water could play
a role in squeezing the magic ball into different shapes. Thus,
further exploration into other properties of the origami magic ball
is required to truly optimize the robot design.

5. CONCLUSION
In this paper, the drag coefficients of three origami magic

balls (4 × 10, 5 × 12, and 6 × 15) in six states (compression
length: 0 cm, 0.6 cm, 1.2 cm, 1.8 cm, 2.4 cm, and 3 cm) are
experimentally determined. By comparing the drag and drag co-
efficient of the magic balls and their corresponding ellipsoids, the
influence of the complex surface geometry of the magic balls is
discovered. From the results, the variation of the drag coefficient
of the magic balls with different resolutions in the same state is
less than 37.3%. The complex surface geometry of the magic
balls contributes to a 57%, 86%, and 61% increase in the drag
coefficient as compared to the smooth ellipsoids. The variation of
drag coefficient across different states could provide intuition for
the future design optimization of the robot and the design of the
control method. Of course, some limitations must be addressed
before we can use these conclusions for future iterations of our
underwater robot design. In this paper, the flow direction of fluid
is set to be the same as the swimming direction of our robot,
and the wind speed was set to be constant at approximately the
robot’s average velocity. However, in the real scenario, the attack
angle could be non-zero, the robot is constantly accelerating and
decelerating, and sometimes the flow could be turbulent. There-
fore, it can be meaningful to characterize the drag coefficient with
various attack angles and Reynolds numbers in the future.
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