Technical Reports (ESE)

Abstract

We consider deployment problems where a mobile robotic network must optimize its configuration in a distributed way in order to minimize a steady-state cost function that depends on the spatial distribution of certain probabilistic events of interest. Three classes of problems are discussed in detail: coverage control problems, spatial partitioning problems, and dynamic vehicle routing problems. Moreover, we assume that the event distribution is a priori unknown, and can only be progressively inferred from the observation of the location of the actual event occurrences. For each problem we present distributed stochastic gradient algorithms that optimize the performance objective. The stochastic gradient view simplifies and generalizes previously proposed solutions, and is applicable to new complex scenarios, for example adaptive coverage involving heterogeneous agents. Finally, our algorithms often take the form of simple distributed rules that could be implemented on resource-limited platforms.

Document Type

Technical Report

Date of this Version

10-25-2010

Keywords

robotics, coverage control problems, partitioning algorithms, stochastic gradient algorithms, dynamic vehicle routing problems, adaptive algorithms

Share

COinS
 

Date Posted: 26 October 2010