Model-IQ: Uncertainty Propagation from Sensing to Modeling and Control in Buildings.

Loading...
Thumbnail Image
Penn collection
Real-Time and Embedded Systems Lab (mLAB)
Degree type
Discipline
Subject
modeliq
inverse modeling
building modeling
energy-efficient control
uncertainty
mpc
model predictive control
sensing
retrofitting
Computer Engineering
Electrical and Computer Engineering
Systems Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

A fundamental problem in the design of closed-loop Cyber-Physical Systems (CPS) is in accurately capturing the dynamics of the underlying physical system. To provide optimal control for such closed-loop systems, model-based controls require accurate physical plant models. It is hard to analytically establish (a) how data quality from sensors affects model accuracy, and consequently, (b) the effect of model accuracy on the operational cost of model-based controllers. We present the Model-IQ toolbox which, given a plant model and real input data, automatically evaluates the effect of this uncertainty propagation from sensor data to model accuracy to controller performance. We apply the Model-IQ uncertainty analysis for model-based controls in buildings to demonstrate the cost-benefit of adding temporary sensors to capture a building model. We show how sensor placement and density bias training data. For the real building considered, a bias of 1% degrades model accuracy by 20%. Model-IQ's automated process lowers the cost of sensor deployment, model training and evaluation of advanced controls for small and medium sized buildings. Such end-to-end analysis of uncertainty propagation has the potential to lower the cost for CPS with closed-loop model based control. We demonstrate this with real building data in the Department of Energy's HUB.

Advisor
Date of presentation
2014-04-01
Conference name
Real-Time and Embedded Systems Lab (mLAB)
Conference dates
2023-05-17T08:20:10.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
@article{behl_iccps14, author = {Madhur Behl, Truong Nghiem and Rahul Mangharam}, title = {Model-IQ: Uncertainty Propagation from Sensing to Modeling and Control in Buildings}, journal = {ACM/IEEE International Conference on Cyber-Physical Systems}, year = {2014} }
Recommended citation
Collection