Behl, Madhur

Loading...
Profile Picture
Email Address
ORCID
Disciplines
Controls and Control Theory
Electrical and Electronics
Power and Energy
Robotics
Systems Engineering
Research Projects
Organizational Units
Position
PhD Candidate
Introduction
I am a Ph.D. candidate in the Department of Electrical and Systems Engineering in the School of Engineering and Applied Science at University of Pennsylvania. I am a member of the Real Time and Embedded Systems Lab at UPenn. I work in the area of real time and embedded systems, energy-efficient operation of buildings ,integration of control and scheduling theory and cyber physical systems. I have added interest in networked robotics, vehicular networks, automotive embedded systems, machine learning and embedded systems for medical devices.
Research Interests

Search Results

Now showing 1 - 10 of 17
  • Publication
    Sometimes, Money Does Grow on Trees: DR-Advisor, A Data Driven Demand Response Recommender System
    (2015-09-01) Behl, Madhur; Mangharam, Rahul
    Unprecedented amounts of information from millions of smart meters and thermostats installed in recent years has left the door open for better understanding, analyzing and using the insights that data can provide, about the power consumption patterns of a building. The challenge with using data-driven approaches, is to close the loop for near real-time control and decision making in large buildings. Furthermore, providing a technological solution alone is not enough, the solution must also be human centric. We consider the problem of end-user demand response for commercial buildings. Using historical data from the building, we build a family of regression trees based models for predicting the power consumption of the building in real-time. We have built DR-Advisor, a recommender system for the building's facilities manager, which provides optimal control actions to meet the required load curtailment while maintaining building operations and maximizing the economic reward.
  • Publication
    Green Scheduling for Radiant Systems in Buildings
    (2012-10-01) Nghiem, Truong X; Behl, Madhur; Pappas, George J.; Mangharam, Rahul
    In this report we look at the problem of peak power reduction for buildings with electric radiant floor heating systems. Uncoordinated operation of a multi-zone radiant floor heating system can result in temporally correlated electricity demand surges or peaks in the building’s electricity consumption. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity can result in high electricity costs and expensive system operation. We have previously presented green scheduling as an approach for reducing the aggregate peak power consumption in buildings while ensuring that indoor thermal comfort is always maintained. This report extends the theoretical results for general affine dynamical systems and applies them to electric radiant floor heating systems. The potential of the proposed method in reducing the peak power demand is demonstrated for a small-scale system through simulation in EnergyPlus and for a large-scale system through simulation in Matlab.
  • Publication
    Green Scheduling for Energy-Efficient Operation of Multiple Chiller Plants
    (2012-10-01) Behl, Madhur; Nghiem, Truong; Mangharam, Rahul
    In large building systems, such as a university campus, the air-conditioning systems are commonly served by chiller plants, which contribute a large fraction of the total electricity consumption of the campuses. The power consumption of a chiller is highly affected by its Coefficient of Performance (COP), which is optimal when the chiller is operated at or near full load. For a chiller plant, its overall COP can be optimized by utilizing a Thermal Energy Storage (TES) and switching its operation between COP-optimal charging and discharging modes. However, uncoordinated mode switchings of chiller plants may cause temporally-correlated high electricity demand when multiple plants are charging their TES concurrently. In this technical report, a Green Scheduling approach, proposed in our previous work, is used to schedule the chiller plants to reduce their peak aggregate power demand while ensuring safe operation of the TES. We present a scheduling algorithm based on backward reach set computation of the TES dynamics. The proposed algorithm is demonstrated in a numerical simulation in Matlab to be effective for reducing the peak power demand and the overall electricity cost.
  • Publication
    Scalable Scheduling of Building Control Systems for Peak Demand Reduction
    (2012-06-15) Nghiem, Truong; Behl, Madhur; Mangharam, Rahul; Pappas, George
    In large energy systems, peak demand might cause severe issues such as service disruption and high cost of energy production and distribution. Under the widely adopted peak-demand pricing policy, electricity customers are charged a very high price for their maximum demand to discourage their energy usage in peak load conditions. In buildings, peak demand is often the result of temporally correlated energy demand surges caused by uncoordinated operation of sub-systems such as heating, ventilating, air conditioning and refrigeration (HVAC&R) systems and lighting systems. We have previously presented green scheduling as an approach to schedule the building control systems within a constrained peak demand envelope while ensuring that custom climate conditions are facilitated. This paper provides a sufficient schedulability condition for the peak constraint to be realizable for a large and practical class of system dynamics that can capture certain nonlinear dynamics, inter-dependencies, and constrained disturbances. We also present a method for synthesizing periodic schedules for the system. The proposed method is demonstrated in a simulation example to be scalable and effective for a large-scale system.
  • Publication
    Evaluation of DR-Advisor on the ASHRAE Great Energy Predictor Shootout Challenge
    (2014-07-24) Behl, Madhur; Mangharam, Rahul
    This paper describes the evaluation of DR-Advisor algorithms on ''The Great Energy Predictor Shootout - The First Building Data Analysis and Prediction Competition'' held in 1993-94 by ASHRAE.
  • Publication
    MLE+: A Tool for Integrated Design and Deployment of Energy Efficient Building Controls
    (2012-10-01) Bernal, Willy; Behl, Madhur; Nghiem, Truong; Mangharam, Rahul
    We present MLE+, a tool for energy-efficient building automation design, co-simulation and analysis. The tool leverages the high-fidelity building simulation capabilities of EnergyPlus and the scientific computation and design capabilities of Matlab for controller design. MLE+ facilitates integrated building simulation and controller formulation with integrated support for system identification, control design, optimization, simulation analysis and communication between software applications and building equipment. It provides streamlined workflows, a graphical front-end, and debugging support to help control engineers eliminate design and programming errors and take informed decisions early in the design stage, leading to fewer iterations in the building automation development cycle. We show through an example and two case studies how MLE+ can be used for designing energy-efficient control algorithms for both simulated buildings in EnergyPlus and real building equipment via BACnet.
  • Publication
    Sometimes, Money Does Grow On Trees: Data-Driven Demand Response with DR-Advisor
    (2015-11-14) Behl, Madhur; Mangharam, Rahul
    Real-time electricity pricing and demand response has become a clean, reliable and cost-effective way of mitigating peak demand on the electricity grid. We consider the problem of end-user demand response (DR) for large commercial buildings which involves predicting the demand response baseline, evaluating fixed DR strategies and synthesizing DR control actions for load curtailment in return for a financial reward. Using historical data from the building, we build a family of regression trees and learn data-driven models for predicting the power consumption of the building in real-time. We present a method called DR-Advisor called DR-Advisor, which acts as a recommender system for the building's facilities manager and provides suitable control actions to meet the desired load curtailment while maintaining operations and maximizing the economic reward. We evaluate the performance of DR-Advisor for demand response using data from a real office building and a virtual test-bed.
  • Publication
    Data-Driven Modeling, Control and Tools for Cyber-Physical Energy Systems
    (2016-04-01) Behl, Madhur; Jain, Achin; Mangharam, Rahul
    Demand response (DR) is becoming increasingly important as the volatility on the grid continues to increase. Current DR approaches are completely manual and rule-based or in- volve deriving first principles based models which are ex- tremely cost and time prohibitive to build. We consider the problem of data-driven end-user DR for large buildings which involves predicting the demand response baseline, evaluating fixed rule based DR strategies and synthesizing DR control actions. We provide a model based control with regression trees algorithm (mbCRT), which allows us to perform closed- loop control for DR strategy synthesis for large commercial buildings. Our data-driven control synthesis algorithm out- performs rule-based DR by 17% for a large DoE commercial reference building and leads to a curtailment of 380kW and over $45, 000 in savings. Our methods have been integrated into an open source tool called DR-Advisor, which acts as a recommender system for the building’s facilities manager and provides suitable control actions to meet the desired load curtailment while maintaining operations and maximizing the economic reward. DR-Advisor achieves 92.8% to 98.9% pre- diction accuracy for 8 buildings on Penn’s campus. We com- pare DR-Advisor with other data driven methods and rank 2nd on ASHRAE’s benchmarking data-set for energy predic- tion.
  • Publication
    Uncertainty Propagation from Sensing to Modeling and Control in Buildings - Technical Report
    (2013-10-19) Behl, Madhur; Nghiem, Truong; Mangharam, Rahul
    A fundamental problem in the design of closed-loop Cyber-Physical Systems (CPS) is in accurately capturing the dynamics of the underlying physical system. To provide optimal control for such closed-loop systems, model-based controls require accurate physical plant models. It is hard to analytically establish (a) how data quality from sensors affects model accuracy, and consequently, (b) the effect of model accuracy on the operational cost of model-based controllers. We present the Model-IQ toolbox which, given a plant model and real input data, automatically evaluates the effect of this uncertainty propagation from sensor data to model accuracy to controller performance. We apply the Model-IQ uncertainty analysis for model-based controls in buildings to demonstrate the cost-benefit of adding temporary sensors to capture a building model. Model-IQ's automated process lowers the cost of sensor deployment, model training and evaluation of advanced controls for small and medium sized buildings. Model-IQ provides recommendation of sensor placement and density to trade-off the cost of additional sensors with energy savings by the improved controller performance. Such end-to-end analysis of uncertainty propagation has the potential to lower the cost for CPS with closed-loop model based control. We demonstrate this with real building data in the Department of Energy's HUB.
  • Publication
    Green Scheduling of Control Systems for Peak Demand Reduction
    (2011-12-01) Nghiem, Truong X; Behl, Madhur; Mangharam, Rahul; Pappas, George J
    Building systems such as heating, air quality control and refrigeration operate independently of each other and frequently result in temporally correlated energy demand surges. As peak power prices are 200-400 times that of the nominal rate, this uncoordinated activity is both expensive and operationally inefficient. We present an approach to fine-grained coordination of energy demand by scheduling the control systems within a constrained peak while ensuring custom climate environments are facilitated. The peak constraint is minimized for energy efficiency, while we provide feasibility conditions for the constraint to be realizable by a scheduling policy for the control systems. The physical systems are then coordinated by the scheduling controller so as both the peak constraint and the climate/safety constraint are satisfied. We also introduce a simple scheduling approach called lazy scheduling. The proposed control and scheduling strategy is implemented in simulation examples from small to large scales, which show that it can achieve significant peak demand reduction while being efficient and scalable.