Recurrently Connected Silicon Neurons with Active Dendrites for One-Shot Learning
Files
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
We describe a neuromorphic chip designed to model active dendrites, recurrent connectivity, and plastic synapses to support one-shot learning. Specifically, it is designed to capture neural firing patterns (short-term memory), memorize individual patterns (long-term memory), and retrive them when primed (associative recall). It consists of a recurrently connected population of excitatory pyramidal cells and a recurrently connected population of inhibitory basket cells. In addition to their recurrent connections, the excitatory and inhibitory populations are reciprocally connected. The model is novel in that it utilizes recurrent connections and active dendrites to maintain short-term memories as well as to store long-term memories.