Golden Rule of Forecasting: Be Conservative
Penn collection
Degree type
Discipline
Subject
bias
big data
causality
checklists
combining
elections
index method
judgmental bootstrapping
structured analogies
uncertainty
Applied Behavior Analysis
Behavioral Economics
Business
Business Analytics
Business Intelligence
Marketing
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
This article proposes a unifying theory, or the Golden Rule, or forecasting. The Golden Rule of Forecasting is to be conservative. A conservative forecast is consistent with cumulative knowledge about the present and the past. To be conservative, forecasters must seek out and use all knowledge relevant to the problem, including knowledge of methods validated for the situation. Twenty-eight guidelines are logically deduced from the Golden Rule. A review of evidence identified 105 papers with experimental comparisons; 102 support the guidelines. Ignoring a single guideline increased forecast error by more than two-fifths on average. Ignoring the Golden Rule is likely to harm accuracy most when the situation is uncertain and complex, and when bias is likely. Non-experts who use the Golden Rule can identify dubious forecasts quickly and inexpensively. To date, ignorance of research findings, bias, sophisticated statistical procedures, and the proliferation of big data, have led forecasters to violate the Golden Rule. As a result, despite major advances in evidence-based forecasting methods, forecasting practice in many fields has failed to improve over the past half-century.