Post-Combustion CO2 Capture using Desublimation Technology

Loading...
Thumbnail Image
Penn collection
School of Engineering and Applied Science::Department of Chemical & Biomolecular Engineering::Senior Design Reports (CBE)
Degree type
Discipline
Chemical Engineering
Subject
Chemical and Biomolecular Engineering
Funder
Grant number
Copyright date
2024-06-18
Distributor
Related resources
Author
Piotrzkowski, Kathleen
Izere, Dorine
Yang, Bailey
Contributor
Abstract

Carbon dioxide levels in the atmosphere have risen dramatically over the past century, causing serious environmental concerns. The largest contributor to carbon emissions is the burning of fossil fuels for energy production. Much research is being conducted to develop new alternative fuels that do not release carbon dioxide, including hydrogen, solar, and geothermal. Despite these efforts, carbon-emitting fuel sources still supply about 80% of the world’s energy. To decrease carbon emissions in the current energy landscape, carbon capture is essential. Carbon capture selectively captures CO2 from the atmosphere through direct air capture (DAC) or point-source capture from flue gas streams. Existing carbon capture technologies only capture 0.4% of total emissions in the U.S., providing much demand and opportunity for the rapid development of new technologies. Carbon capture using desublimation selectively captures CO2 by decreasing the temperature inducing a phase change of CO2 from vapor to solid, producing pure carbon dioxide. This project proposes a process to capture 100,000 tons per year of carbon dioxide at 99% purity from a typical natural gas-fired power plant feed stream using desublimation technology. Our process offers a competitive design for carbon capture from diluted flue gas streams at $119 per ton of CO2.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2024-06-18
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection