Kim, Christopher Y

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 2 of 2
  • Publication
    Fabrication and Characterization of I-cord Knitted SMA Actuators
    (2021-03-13) Kim, Christopher Y; Chien, Athena; Tippur, Megha; Sung, Cynthia
    Knitted SMA actuators provide greater actuation stroke than single-strand SMA wire actuators by leveraging its knitted structure. However, due to short-circuiting through interlacing knit loops, existing knitted SMA sheet actuators are unsuitable for joule-heating actuation when uniform contractile actuation is desired. We explore an axially symmetric tubular i-cord knitted actuator as a possible solution. The fabrication process of an i-cord knitted SMA actuator and its electrical, thermal, and mechanics models are presented. After modifying existing models for single-strand SMA wire and adjusting their parameters, the proposed electrical, thermal, and mechanics models were verified with experimental results. Acknowledgements Support for this project has been provided in part by NSF REU EEC-1659190 and by the GeorgiaTech Stamps President's Scholars program.
  • Publication
    Origami-Inspired Bistable Gripper with Self-Sensing Capabilities
    (7th IEEE-RAS International Conference on Soft Robotics (Robosoft) 2024, 2024-04) Kim, Christopher Y; Yang, Lele; Anbuchelvan, Ashwath; Garg, Raghav; Milbar, Niv; Vitale, Flavia; Sung, Cynthia
    An origami-inspired bistable gripper, featuring a dual-function custom PET linear solenoid actuator that acts both as an actuator and a sensor, is presented. Movements in the permanent magnet plunger, which is directly mounted to the gripper, create induced electromotive force (emf) in the solenoid, and these induced emf measurements are used to detect snap-through actions and light contacts on the gripper. The fabrication methods for the gripper, actuator, and a gel-free soft wearable EMG electrode are outlined, and the actuator’s self-sensing method utilizing the time-integral of the induced emf measurements are explored. Because a self-sensing actuator eliminates the need for extra sensors, it allows for further miniaturization of the robot while maintaining its compactness and lightweight design. The paper also introduces a full humanin- the-loop system, allowing users to open or close the gripper with their biceps via a wearable EMG electrode. This system bridges human intent with robotic action, offering a more intuitive interaction model for robotic control.