Khamis, Samuel M.

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 2 of 2
  • Publication
    Optimized Photolithographic Fabrication Process for Carbon Nanotube Devices
    (2011-04-14) Khamis, Samuel M.; Johnson, A. T. Charlie; Jones, R. A.
    We have developed a photolithographic process for the fabrication of large arrays of single walled carbon nanotube transistors with high quality electronic properties that rival those of transistors fabricated by electron beam lithography.Abuffer layer is used to prevent direct contact between the nanotube and the novolac-based photoresist, and a cleaning bake at 300C effectively removes residues that bind to the nanotube sidewall during processing. In situ electrical measurement of a nanotube transistor during a temperature ramp reveals sharp decreases in the ON-state resistance that we associate with the vaporization of components of the photoresist. Data from nearly 2000 measured nanotube transistors show an average ON-state resistance of 250 ± 100 kΩ. This new process represents significant progress towards the goal of highyield production of large arrays of nanotube transistors for applications including chemical sensors and transducers, as well as integrated circuit components.
  • Publication
    Nanoenabled microelectromechanical sensor for volatile organic chemical detection
    (2009-06-05) Zuniga, Chiara; Rinaldi, Matteo; Khamis, Samuel M.; Johnson, A. T.; Piazza, Gianluca
    A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also been shown to prove the large dynamic range of sensitivity attainable with the sensor. The adsorption process in the ss-DNA decorated SWNTs does not occur in the bulk of the material, but solely involves the surface, which permits to achieve 50% recovery in less than 29 s.