Zhang, Zhuoyao

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 2 of 2
  • Publication
    Performance Modeling and Resource Management for Mapreduce Applications
    (2014-01-01) Zhang, Zhuoyao
    Big Data analytics is increasingly performed using the MapReduce paradigm and its open-source implementation Hadoop as a platform choice. Many applications associated with live business intelligence are written as complex data analysis programs defined by directed acyclic graphs of MapReduce jobs. An increasing number of these applications have additional requirements for completion time guarantees. The advent of cloud computing brings a competitive alternative solution for data analytic problems while it also introduces new challenges in provisioning clusters that provide best cost-performance trade-offs. In this dissertation, we aim to develop a performance evaluation framework that enables automatic resource management for MapReduce applications in achieving different optimization goals. It consists of the following components: (1) a performance modeling framework that estimates the completion time of a given MapReduce application when executed on a Hadoop cluster according to its input data sets, the job settings and the amount of allocated resources for processing it; (2) a resource allocation strategy for deadline-driven MapReduce applications that automatically tailors and controls the resource allocation on a shared Hadoop cluster to different applications to achieve their (soft) deadlines; (3) a simulator-based solution to the resource provision problem in public cloud environment that guides the users to determine the types and amount of resources that should lease from the service provider for achieving different goals; (4) an optimization strategy to automatically determine the optimal job settings within a MapReduce application for efficient execution and resource usage. We validate the accuracy, efficiency, and performance benefits of the proposed framework using a set of realistic MapReduce applications on both private cluster and public cloud environment.
  • Publication
    Processing Data-Intensive Workflows in the Cloud
    (2012-01-01) Zhang, Zhuoyao
    In the recent years, large-scale data analysis has become critical to the success of modern enterprise. Meanwhile, with the emergence of cloud computing, companies are attracted to move their data analytics tasks to the cloud due to its exible, on demand resources usage and pay-as-you-go pricing model. MapReduce has been widely recognized as an important tool for performing large-scale data analysis in the cloud. It provides a simple and fault-tolerance framework for users to process data-intensive analytics tasks in parallel across dierent physical machines. In this report, we survey alternative implementations of MapReduce, contrasting batched-oriented and pipelined execution models and study how these models impact response times, completion time and robustness. Next, we present three optimization strategies for MapReduce-style work- ows, including (1) scan sharing across MapReduce programs, (2) work- ow optimizations aimed at reducing intermediate data, and (3) schedul- ing policies that map work ow tasks to dierent machines in order to minimize completion times and monetary costs. We conclude with a brief comparison across these optimization strate- gies, and discuss their pros/cons as well as performance implications of using more than one optimization strategy at a time.University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-12-07.