Sung, Cynthia

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 10 of 14
  • Publication
    TrussBot: Modeling, Design, and Control of a Compliant, Helical Truss of Tetrahedral Modules
    (2022-03-01) Qin, Yuhong; Ting, Linda; Saven, Celestina; Amemiya, Yumika; Tanis, Michael; Kamien, Randall; Sung, Cynthia R.
    Modular and truss robots offer the potential of high reconfigurability and great functional flexibility, but common implementations relying on rigid components often lead to highly complex actuation and control requirements. This paper introduces a new type of modular, compliant robot: TrussBot. TrussBot is composed of 3D-printed tetrahedral modules connected at the corners with compliant joints. We propose a truss geometry, analyze its deformation modes, and provide a simulation framework for predicting its behavior under applied loads and actuation. The TrussBot is geometrically constrained, thus requiring compliant joints to move. The TrussBot can be actuated through a network of tendons which pinch vertices together and apply a twisting motion due to the structure's connectivity. The truss was demonstrated in a physical prototype and compared to simulation results. Supplemental video: https://youtu.be/bcvFMq40EzI
  • Publication
    Forward Kinematics and Control of a Segmented Tunable-Stiffness 3-D Continuum Manipulator
    (2022-01-01) Misra, Shivangi; Sung, Cynthia
    In this work, we consider the problem of controlling the end effector position of a continuum manipulator through local stiffness changes. Continuum manipulators offer the advantage of continuous deformation along their lengths, and recent advances in smart material actuators further enable local compliance changes, which can affect the manipulator's bulk motion. However, leveraging local stiffness change to control motion remains lightly explored. We build a kinematic model of a continuum manipulator as a sequence of segments consisting of symmetrically arranged springs around the perimeter of every segment, and we show that this system has a closed form solution to its forward kinematics. The model includes common constraints such as restriction of torsional or shearing movement. Based on this model, we propose a controller on the spring stiffnesses for a single segment and provide provable guarantees on convergence to a desired goal position. The results are verified in simulation and compared to physical hardware.
  • Publication
    A Tendon-Driven Origami Hopper Triggered by Proprioceptive Contact Detection
    (2020-04-06) Chen, Wei-Hsi; Misra, Shivangi; Caporale, J. Diego; Yang, Shu; Sung, Cynthia R.; Koditschek, Daniel E
    We report on experiments with a laptop-sized (0.23m, 2.53kg), paper origami robot that exhibits highly dynamic and stable two degree-of-freedom (circular boom) hopping at speeds in excess of 1.5 bl/s (body-lengths per second) at a specific resistance O(1) while achieving aerial phase apex states 25% above the stance height over thousands of cycles. Three conventional brushless DC motors load energy into the folded paper springs through pulley-borne cables whose sudden loss of tension upon touchdown triggers the release of spring potential that accelerates the body back through liftoff to flight with a 20W powerstroke, whereupon the toe angle is adjusted to regulate fore-aft speed. We also demonstrate in the vertical hopping mode the transparency of this actuation scheme by using proprioceptive contact detection with only motor encoder sensing. The combination of actuation and sensing shows potential to lower system complexity for tendon-driven robots. For more information: Kod*lab (link to kodlab.seas.upenn.edu)
  • Publication
    Repeated Jumping with the REBOund: Self-Righting Jumping Robot Leveraging Bistable Origami-Inspired Design
    (2022-03-01) Sun, Yuchen; Wang, Joanna; Sung, Cynthia R.
    Repeated jumping is crucial to the mobility of jumping robots. In this paper, we extend upon the REBOund jumping robot design, an origami-inspired jumping robot that uses the Reconfigurable Expanding Bistable Origami (REBO) pattern as its body. The robot design takes advantage of the pattern's bistability to jump with controllable timing. For jump repeatedly, we also add self-righting legs that utilize a single motor actuation mechanism. We describe a dynamic model that captures the compression of the REBO pattern and the REBOund self-righting process and compared it to the physical robot. Our experiments show that the REBOund is able to successfully self-right and jump repeatedly over tens of jumps. Supplemental video: https://youtu.be/LoCXcwIxCgU
  • Publication
    Kinegami: Algorithmic Design of Compliant Kinematic Chains From Tubular Origami
    (2022-10-12) Chen, Wei-Hsi; Yang, Woohyeok; Peach, Lucien; Koditschek, Daniel E; Sung, Cynthia R
    Origami processes can generate both rigid and compliant structures from the same homogeneous sheet material. In this article, we advance the origami robotics literature by showing that it is possible to construct an arbitrary rigid kinematic chain with prescribed joint compliance from a single tubular sheet. Our “Kinegami” algorithm converts a Denavit–Hartenberg specification into a single-sheet crease pattern for an equivalent serial robot mechanism by composing origami modules from a catalogue. The algorithm arises from the key observation that tubular origami linkage design reduces to a Dubins path planning problem. The automatically generated structural connections and movable joints that realize the specified design can also be endowed with independent user-specified compliance. We apply the Kinegami algorithm to a number of common robot mechanisms and hand-fold their algorithmically generated single-sheet crease patterns into functioning kinematic chains. We believe this is the first completely automated end-to-end system for converting an abstract manipulator specification into a physically realizable origami design that requires no additional human input.
  • Publication
    Design and Control of a Tunable-Stiffness Coiled-Spring Actuator
    (2023-05-29) Misra, Shivangi; Mitchell, Mason; Chen, Rongqian; Sung, Cynthia
    We propose a novel design for a lightweight and compact tunable stiffness actuator capable of stiffness changes up to 20x. The design is based on the concept of a coiled spring, where changes in the number of layers in the spring change the bulk stiffness in a near-linear fashion. We present an elastica nested rings model for the deformation of the proposed actuator and empirically verify that the designed stiffness-changing spring abides by this model. Using the resulting model, we design a physical prototype of the tunable-stiffness coiled-spring actuator and discuss the effect of design choices on the resulting achievable stiffness range and resolution. In the future, this actuator design could be useful in a wide variety of soft robotics applications, where fast, controllable, and local stiffness change is required over a large range of stiffnesses.
  • Publication
    Drag Coefficient Characterization of the Origami Magic Ball (Inproceedings)
    (2023-08-29) Chen, Guanyu; Chen, Dongsheng; Weakly, Jessica; Sung, Cynthia
    The drag coefficient plays a vital role in the design and optimization of robots that move through fluids. From aircraft to underwater vehicles, their geometries are specially engineered so that the drag coefficients are as low as possible to achieve energy-efficient performances. Origami magic balls are 3-dimensional reconfigurable geometries composed of repeated simple waterbomb units. Their volumes can change as their geometries vary and we have used this concept in a recent underwater robot design. This paper characterizes the drag coefficient of an origami magic ball in a wind tunnel. Through dimensional analysis, the scenario where the robot swims underwater is equivalently transferred to the situation when it is in the wind tunnel. With experiments, we have collected and analyzed the drag force data. It is concluded that the drag coefficient of the magic ball increases from around 0.64 to 1.26 as it transforms from a slim ellipsoidal shape to an oblate spherical shape. Additionally, three different magic balls produce increases in the drag coefficient of between 57% and 86% on average compared to the smooth geometries of the same size and aspect ratio. The results will be useful in future designs of robots using waterbomb origami in fluidic environments.
  • Publication
    Push-On Push-Off: A Compliant Bistable Gripper with Mechanical Sensing and Actuation
    (2021-03-13) McWilliams, Jessica; Yuan, Yifan; Sung, Cynthia; Friedman, Jason
    Grasping is an essential task in robotic applications and is an open challenge due to the complexity and uncertainty of contact interactions. In order to achieve robust grasping, systems typically rely on precise actuators and reliable sensing in order to control the contact state. We propose an alternative design paradigm that leverages contact and a compliant bistable mechanism in order to achieve "sensing" and "actuation" purely mechanically. To grasp an object, the manipulator holding our end effector presses the bistable mechanism into the object until snap-through causes the gripper to enclose it. To release the object, the tips of the gripper are pushed against the ground, until rotation of the linkages causes snap-through in the other direction. This push-on push-off scheme reduces the complexity of the grasping task by allowing the manipulator to automatically achieve the correct grasping behavior as long as it can get the end effector to the correct location and apply sufficient force. We present our dynamic model for the bistable gripping mechanism, propose an optimized result, and demonstrate the functionality of the concept on a fabricated prototype. We discuss our stiffness tuning strategy for the 3D printed springs, and verify the snap-through behavior of the system using compression tests on an MTS machine. Acknowledgements Support for this project has been provided in part by NSF Grant No. 1138847 and DGE-1845298. We also thank Terry Kientz, Jeremy Wang, Peter Szczesniak, and Joe Valdez for their assistance with the fabrication, and Neal Tinaikar for assistance with initial prototypes. We are grateful.
  • Publication
    Reconfiguring Non-Convex Holes in Pivoting Modular Cube Robots
    (2021-07-07) Feshbach, Daniel Adam; Sung, Cynthia
    We present an algorithm for self-reconfiguration of admissible 3D configurations of pivoting modular cube robots with holes of arbitrary shape and number. Cube modules move across the surface of configurations by pivoting about shared edges, enabling configurations to reshape themselves. Previous work provides a reconfiguration algorithm for admissible 3D configurations containing no non-convex holes; we improve upon this by handling arbitrary admissible 3D configurations. The key insight specifies a point in the deconstruction of layers enclosing non-convex holes at which we can pause and move inner modules out of the hole. We prove this happens early enough to maintain connectivity, but late enough to open enough room in the enclosing layer for modules to escape the hole. Our algorithm gives reconfiguration plans with O(n^2) moves for n modules.
  • Publication
    Origami-Inspired Robot that Swims via Jet Propulsion
    (2021-07-13) Yang, Zhiyuan; Chen, Dongsheng; Levine, David J; Sung, Cynthia R.
    Underwater swimmers present unique opportunities for using bodily reconfiguration for self propulsion. Origami-inspired designs are low-cost, fast to fabricate, robust, and can be used to create compliant mechanisms useful in energy efficient underwater locomotion. In this paper, we demonstrate an origami-inspired robot that can change its body shape to ingest and expel water, creating a jet that propels it forward similarly to cephalopods. We use the magic ball origami pattern, which can transform between ellipsoidal (low volume) and spherical (high volume) shapes. A custom actuation mechanism contracts the robot to take in fluid, and the inherent mechanics of the magic ball returns the robot to its natural shape upon release. We describe the design and control of this robot and verify its locomotion in a water tank. The resulting robot is able to move forward at 6.7 cm/s (0.2 body lengths/s), with a cost of transport of 2.0.