Family Algebras and the Isotypic Components of g tensor g

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Mathematics
Discipline
Subject
Associative Algebras
Generalized Exponents
Lie Theory
Representation Theory
Mathematics
Funder
Grant number
License
Copyright date
2015-11-16T20:14:00-08:00
Distributor
Related resources
Contributor
Abstract

Given a complex simple Lie algebra $g$ with adjoint group $G$, the space $S(g)$ of polynomials on $\mg$ is isomorphic as a graded $\mg$-module to $(I(g)\otimes \mathscr{H}(g)$ where $I(g) = (S(g))^G$ is the space of $G$-invariant polynomials and $\mathscr{H}(g)$ is the space of $G$-harmonic polynomials. For a representation $V$ of $g$, the generalized exponents of $V$ are given by $\sum_{k \geq 0}dim(Hom_g(V,H_k(g))q^k$. We define an algebra $C_V(g) = Hom_g(End(V),S(g))$ and for the case of $V = g$ we determine the structure of $g$ using a combination of diagrammatic methods and information about representations of the Weyl-group of $g$. We find an almost uniform description of $C_g(g)$ as an $I(g)$-algebra and as an $I(g)$-module and from there determine the generalized exponents of the irreducible components of $End(g)$. The results support conjectures about $(T(g))^G$, the $G$-invariant part of the tensor algebra, and about a relation between generalized exponents and Lusztig's fake degrees.

Advisor
Alexandre Kirillov
Date of degree
2014-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation