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ABSTRACT

FAMILY ALGEBRAS AND THE ISOTYPIC COMPONENTS OF g⊗g

Matthew Tai

Alexandre Kirillov

Given a complex simple Lie algebra g with adjoint group G , the space S(g) of poly-

nomials on g is isomorphic as a graded g-module to (I (g)⊗H(g) where I (g) = (S(g))G

is the space of G-invariant polynomials and H(g) is the space of G-harmonic poly-

nomials. For a representation V of g, the generalized exponents of V are given by∑
k≥0

di m(Homg(V , Hk (g))qk . We define an algebra CV (g) = Homg(End(V ),S(g)) and

for the case of V = g we determine the structure of g using a combination of diagram-

matic methods and information about representations of the Weyl-group of g. We

find an almost uniform description of Cg(g) as an I (g)-algebra and as an I (g)-module

and from there determine the generalized exponents of the irreducible components

of End(g). The results support conjectures about (T (g))G , the G-invariant part of the

tensor algebra, and about a relation between generalized exponents and Lusztig’s fake

degrees.
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Chapter 1

Introduction

1.1 Simple Lie Algebras and Exponents

We consider the simple Lie algebras, these being the four classical series Ar ,Br ,Cr ,Dr

and the five exceptional algebras G2,F4,E6,E7,E8. Associated to each of these algebras

is a list of numbers called their exponents, which appear in a number of ways. The

name comes from the exponents of the hyperplane arrangement corresponding to the

simple reflection planes of the Weyl Group of the Lie algebra. The exponents can also

be considered topologically: for the compact group G associated to g, the Poincare

polynomial of G is

PG (q) = ∑
k=0

r k(H k (G ,Z))qk =
r∏

k=1
(1+q2ek+1)

The simple Lie algebras are summarized in the following table, where the descriptions

of the exceptional Lie groups are based on the Rosenfeld projective planes [Ro97].
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Table 1.1: Exponents for the simple Lie algebras

g dimg Exponents Notes

Ar r 2 +2r 1,2,3 . . . ,r sl (r +1)

Br r (2r +1) 1,3,5, . . . ,2r −1 so(2r +1)

Cr r (2r +1) 1,3,5, . . . ,2r −1 sp(r )

Dr r (2r −1) 1,3,5, . . . ,2r −1,r −1 so(2r )

G2 14 1, 5 “sl (1,O)′′

F4 52 1, 5, 7, 11 “sl (2,O)′′

E6 78 1, 4, 5, 7, 8, 11 “sl (2,C⊗O)′′

E7 133 1, 5, 7, 9, 11, 13, 17 “sl (2,H⊗O)′′

E8 248 1, 7, 11, 13, 17, 19, 23, 29 “sl (2,O⊗O)′′
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1.2 Casimir Invariants

The exponents of g also have representation-theoretic interpretations. G acts on g via

the conjugation action, and hence on S(g), the symmetric algebra on g considered as

a vector space. We denote by I (g) the G-invariant subspace (S(g))G . In 1963, Kostant

showed that I (g) for simple g is a polynomial algebra where the number of generators

is equal to the rank of g, and that furthermore the degrees of these generators are each

one more than an exponent of g. For later use we establish a particular choice of gen-

erators of I (g), which we will call primitive Casimir operators.

For each Lie algebra, we pick a representation (V ,π) with which to define the primitive

Casimir operators. For sl (r +1) we pick one of the two r +1-dimensional representa-

tions. For so(n) we pick the n-dimensional representation, and for sp(r ) we pick the

2r -dimensional representation. For G2,F4,E6,E7, and E8 we pick the 7−,26−,27−,56−,

and 248−dimensional representations respectively. These are often also called the

“standard” representations, and with a few exceptions are the nontrivial representa-

tions of minimal dimension. From here on out, unless otherwise specified, V and π

refer to this defining representation.

Letting {xα} be a basis of g and K be the Killing form, define

Md =π(xα)⊗K αβxβ

regarded as an S(g)-valued square matrix of dimension dimV .

Except in the case of Dr , we can order the exponents of g in increasing order, so that

3



we can denote the exponents by

e1 < e2 < . . . < er

We define the Casimir operator

ck = tr (M ek+1
d )

where the trace is taken in the minimal representation V . The set {ck } are the primitive

Casimir operators for g.

In the case of Dr , the exponents are 1,3, . . . ,2r − 3,r − 1. We order the exponents in

increasing order, getting that ed r
2e = r −1. For k 6= ⌈ r

2

⌉
, we write

ck = tr (M ek+1
d )

and for k = ⌈ r
2

⌉
we define

ck = P f =
√

det(Md )

picking the sign of P f arbitrarily.

For sl (r +1), the exponents are ei = i for 1 ≤ i ≤ r . For k > r +1, we have the reduction,

0 = ∑
n j m j=k

1

m j !

(
− tr (M

n j

d )

n j

)m j

where the notation n j m j = k indicates a partition of k where n j appears with multi-

plicity m j . In particular, the relation for k = r +2 is the trace of the Cayley-Hamilton

identity for Md .

For the other simple Lie algebras, there are similar formulas for reducing tr (M k
d ) for

4



k not an exponent plus 1, with varying complexity. For the exceptional Lie algebras,

dim(V ) is much larger than er +1, so the Cayley-Hamilton identity doesn’t yield much

information about the how traces of low powers of Md reduce. See [RSV99] for details.

1.3 Generalized Exponents

In 1963, Kostant [Ko63] proved that for a representation V of g and hence of G , (V ⊗

S(g))G = HomG (V ∨,S(g)) is a free I (g) module. Thus we can find a basis for (V ⊗S(g))G

over I (g); Kostant calls the degrees of the polynomial components of this basis the gen-

eralized exponents of V (with multiplicity), usually expressed as a polynomial PV (q)

for a variable q . Note that for V = g, the generalized exponents for g match the classi-

cal notion of the exponents of g.

There is another description of the generalized exponents in terms of a space H(g) of

G-harmonic polynomials. Let D(g) be the space of G-invariant differential operators

on S(g) with constant coefficients, and let D+(g) be the subspace of D(g) with vanish-

ing constant term. Then H(g) is defined by

H(g) = { f ∈ S(g)|d( f ) = 0 ∀d ∈ D+(g)}

The condition d( f ) = 0 generalizes the usual harmonic condition of∆( f ) = 0, and thus

the G-harmonic polynomials allow for studying functions defined on Lie groups using

methods from harmonic analysis.

Kostant showed that S(g) ∼= I (g)⊗H(g) as graded g-modules. Since the elements of

5



I (g) are invariant, all of the interesting behavior is contained in H(g). Thus we can

write the generalized exponents of a representation V as

PV (q) =∑
k

dim(Homg(V ,Hk (g)))qk

Hesselink [He80] gives a formula for computing the generalized exponents of an irre-

ducible representation of a simple Lie algebra using a q-analogue of Kostant’s multi-

plicity formula, but using this formula is computationally infeasible, involving com-

puting the q-analogue of the partition function, which unlike the normal partition

function doesn’t vanish for negative weights, and then summing the partition func-

tion over the associated Weyl orbit. There are also combinatorial approaches such as

the Kostka-Foulkes polynomials for sl (n) [DLT94]. For representations where none of

the weights are twice a root (called small representations), Broer [Br95] showed that

the generalized exponents of V are equal to what Lusztig calls the fake degrees [Lu77]

of V T as a representation of W .

In general, however, there are no known closed-form expressions for the generalized

exponents of arbitrary representations that don’t require summation over the Weyl

group.

6



Chapter 2

Introduction to Family Algebras

2.1 Definition of Family Algebras

In [Ki00], Kirillov introduced what he calls Family Algebras in the hopes of providing

a new method for determining generalized exponents that doesn’t involve summing

over the Weyl group.

We fix a representation V of g and consider End(V ), with the conjugation action on it

induced from the action on V . We define the classical family algebra

CV (g) = (End(V )⊗S(g))G

where G is the adjoint group of g and acts by the action induced from g. This is an

algebra with multiplication ◦⊗m inherited from

◦ : End(V )⊗End(V ) → End(V )

7



via composition and

m : S(g)⊗S(g) → S(g)

via polynomial multiplication.

If we pick a basis {va} for V and let E b
a be defined by E b

a vb = va , then we can write an

element of the family algebra as

E b
a ⊗P a

b

where P a
b ∈ S(g). We call the set {P a

b } the polynomial component of E b
a ⊗P a

b . Note that

for two elements E b
a ⊗P a

b and E b
a ⊗Qa

b , the multiplication looks like

(E b
a ⊗P a

b )× (E b
a ⊗Qa

b ) = E b
a ⊗P a

c Qc
b

So the multiplication respects the natural grading on the polynomial components, and

hence we say that an element E b
a ⊗P a

b is homogeneous of degree k if all of the {P a
b } are

homogeneous of degree k.

The phrase “family algebra” comes from the decomposition of

End(V ) =⊕
i

Vi

for irreducible Vi , which Kirillov calls the children of V . The family algebra CV (g) de-

composes similarly into

CV (g) =⊕
i

(Vi ⊗S(g))G

Thus a family algebra gives us an I (g) module that is closed under multiplication and

is built from a finite set of isotypic components. Note that if Vi is a component of

8



End(V ), then so is V ∨
i ; hence

CV (g) =⊕
i

(Vi ⊗S(g))G ∼=
⊕

i
Homg(Vi ,S(g))

There is a natural quantization to what Kirillov calls the quantum family algebra,

QV (g) = (End(V )⊗U (g))G

U (g) is isomorphic to S(g) as G-modules, so there is a map that sends QV (g) to CV (g),

but the classical and quantum family algebras for a given V differ in their multiplica-

tive structures. This dissertation will only consider classical family algebras.

2.2 Relation to the Generalized Exponents

For an irreducible representation Vi , there is an I (g)-linear basis of Homg(Vi ,S(g))

where there is a bijection between generalized exponents ei j (with multiplicity) and

basis elements Ai j such that

Ai j ∈ Homg(Vi ,Hei j (g))

Hence, using the decomposition of End(V ) into irreducible representations, there is

an I (g)-linear basis of CV (g) where each basis element is in Homg(Vi ,Hei j (g)) for some

Vi in the decomposition of End(V ) and some ei j a generalized exponent of Vi .

Thus the general strategy of family algebras is to determine the algebraic structure of

a given family algebra, use that to determine an I (g)-linear basis, turn that basis into a

harmonic basis and from there compute the generalized exponents.

9



2.3 Restriction to the Cartan subalgebra

Given a Cartan subalgebra h of g with corresponding torus T ⊂G , we can look at S(h),

and in particular the restriction r es : S(g) → S(h) given by viewing the two algebras as

Pol [g∨] and Pol [h∨] respectively, and sending an element f ∈ S(g) to f |h∨ . While this

map is generally not an injection, there are some useful aspects. Chevalley’s restriction

theorem [Br95] says that

r es|I (g) : I (g) → I (h) = S(h)W

is an isomorphism. We get a map

Res : (V ⊗S(g))G → (V T ⊗S(h))W

induced by restricting from V to V T and from S(g) to S(h), which Kostant shows is

an injection. The result by Broer mentioned in the first chapter is a necessary and

sufficient condition for Res to be an isomorphism.

Writing BV (h) for End(V )T ⊗S(h) we get that

Res : CV (g) → BV (h)W

is an injection. We can make Res into a surjection by localizing with respect to the

non-zero part of I (g). In particular, let K0 be the fraction field of I (g) ∼= S(h)W . Then by

[Ki01] we have that

CV (g)⊗I (g) K0
∼= BV (h)W ⊗I (h) K0

10



This then tells us that the dimension of CV (g) over I (g) is equal to the dimension of

BV (h)W over I (h).

End(V )T = ⊕
µ∈W t (V )

M atmV (µ)(C)

and so BV (h)W is the W -invariant subalgebra of the sum of matrix algebras

⊕
µ∈W t (V )

M atmV (µ)(S(h))

Since the multiplicity over I (h) of a representation φ of W in S(h) is dim(φ), the di-

mension of BV (h)W over I (h), i.e. the dimension of CV (g), is given by the sum of the

dimensions of the matrix algebras:

∑
µ∈W t (V )

mV (µ)2

Given a weight λ ∈ W t (V ), we can consider an element of BV (h)W that is the identity

on the matrix algebras corresponding to weights in W.λ and vanish elsewhere. Such

an element lifts to an element of CV (g) which, for some P ∈ I (h), restricts to P times the

identity on the matrix algebras corresponding to weights in W.λ and vanish elsewhere.

We can use these elements of CV (g) as analogues to projection operators.

11



Chapter 3

Results for V = g

This dissertation will focus on the particular case of the adjoint representation, i.e. set-

ting V = g. The weights in question are then the roots of g as well as 0 with multiplicity

r , where r is the rank of g. We denote the image of (End(g)T ⊗S(h))W in M atr (S(h)) by

the torus part of the algebra, and everything else by the vector part, as it is composed

of 1-dimensional and hence scalar algebras. Note that the vector part is commutative,

since S(h) is commutative, so any non-commutativity in the family algebra appears

only in the torus part.

3.1 Algebraic Structure

The decomposition of End(g) into irreducible components depends on g, but is uni-

form for all of the An , uniform for Bn ,Cn and Dn , and is uniform for the five excep-

tional Lie algebras [CV08]. The main result of this dissertation is that though the form

12



of Cg(g) as a g-module ends up quite different, the algebraic structures of Cg(g) are

very similar for all of the simple Lie algebras. There are two generators common to

all of family algebras in question, denoted M and S, and then a set of r other gener-

ators, labelled R1 through Rr , that depend on the structure of g. A set of I (g)-linearly

independent basis elements of Cg(g) is then

M mRk for 0 ≤ m ≤ er +1,1 ≤ k ≤ r

RmSRn +RnSRm for 1 ≤ m ≤ n ≤ r −1

RmSRn −RnSRm for 1 ≤ m < n ≤ r

Here R1 is a scalar, left in for uniformity of expression.

The Rk can themselves be generated by either M ,S and R2 in the cases of Ar ,Br ,Cr

and G2, by M ,S,R2 and Rr for Dr , or by M ,S,R2 and R3.in the cases of F4,E6,E7 and

E8.

There are several relations common to all of the cases. The terms M mRk for m ≥ 1

vanish on the torus part, and any term involving S vanishes on the vector part. Hence

M is central and MS = SM = 0. The Rk commute with each other and with M , but

not with S. SRk S = Pk S for some Pk ∈ I (g), although the form of Pk depends on g.

The relations describing the products of the Rk also depend on g, in particular the

existence or absence of primitive Casimir elements in particular degrees.

13



3.2 Fake Degrees

For the Weyl group W acting on the Cartan subalgebra h, there is a notion called “fake

degrees” analogous to that of the generalized exponents, in that there is a polyno-

mial PU (q) describing the maps from a W -representation U into a space M(h) of W -

harmonic polynomials. For the representations relevant to g⊗g, we have the following

statement: if V T =⊕iUi as W -modules, then

PV (q) =∑
i

qki PUi (q)

for some set of exponents ki , although the ki are not uniquely determined.

For each classical families there are uniform expressions for the qi in terms of r , as

well as for the Er family.

14



Chapter 4

Diagrams

We can write elements of the family algebra diagrammatically using the Feynman-

Penrose-Cvitanović “birdtrack” notation [Cv08]. We consider graphs with two types of

edges, called reference and adjoint edges. An adjoint edge is marked here by a thin

line, a reference edge by a thick line with an arrow on it. All edges that end in a univa-

lent vertex must be adjoint edges, and for every diagram one of these univalent vertices

is labelled with an “I”, one with an “O”, and the rest with a white dot. A diagram with

k dotted vertices is considered to have degree k. The other types of allowed vertices

depend on the Lie algebra in question. For example,

I O

In the usual particle interpretation of Feynman diagrams, the adjoint edges are bosons

and the reference edges are fermions carrying the corresponding charge, and vertices

15



of valence higher than 1 being interactions, with G being the gauge group of the inter-

actions. Momentum constraints are ignored here.

In the Lie algebra interpretation, the reference edges correspond to copies of the ref-

erence representation, the adjoint edges are copies of the adjoint representation, and

vertices of valence higher than 1 are invariants. In particular, the vertices with one

reference edge pointing in, one reference edge pointing out and one adjoint edge at-

tached are Clebsches for V ⊗V ∨ → Ad j . In the standard index notation for tensors,

each vertex is an invariant tensor with an upper reference index for each arrow going

in, a lower reference index for each arrow going out, and an adjoint index for each ad-

joint edge attached; two indices are contracted if they are connected by an edge. The

ability to turn upper adjoint indices into lower adjoint indices via the Killing form al-

lows us to not require arrows on the adjoint edges.

We consider the dotted vertices as indistinguishable, so that if two diagrams differ only

by which of a pair of adjoint edges connect to which of a pair of dotted vertices, we

consider the diagrams equivalent.

=

The dotted vertices correspond to our polynomial part {Pα
β

}. The I and O vertices cor-

respond to our coordinate indices Eβ
α. A component that is not connected to either of

the I or O vertices is contained entirely within S(g), and hence in I (g), so a component

with only dotted vertices acts as a coefficient. A diagram is considered as the tensor

product of its connected components.
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These diagrams are all naturally G-invariant, being built out of G-invariant objects,

and hence all diagrams are naturally in (End(g)⊗S(g))G . Thus any diagram as defined

above automatically gives a family algebra element, as opposed to the initial setup of

defining End(g)⊗S(g) and then imposing g-invariance as an additional property. By

Cvitanović, all elements of the family algebra are formalC-linear combinations of such

diagrams, so we can consider the algebra in terms of these diagrams.

The family algebra product of two diagrams is the diagram created by removing the I

vertex of one diagram and the O vertex of the other and identifying the adjoint edges

those vertices were attached to, which is the equivalent of contracting the adjoint in-

dices that the two edges corresponded to.

G ×H= G

I O

× H

I O

= G

I

H

O

We can also define the trace of a family algebra element similarly, by removing both

the I and the O vertices of a family algebra element and identifying the adjoint edges

those vertices were attached to.

4.1 Casimir Operators and Structure Constants

Given a reference loop going through n Clebsche vertices, we have n adjoint edges

coming off of the loop, and the loop corresponds to

tr (π(X1)π(X2) · · ·π(Xn))
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where the Xi are the adjoint edges, i.e. elements of g. As such, a loop of reference

edges going through k Clebsche vertices will be called a “trace” of order k from now

on. A trace of degree ek +1 whose adjoint edges all end in dotted vertices evaluates to

the primitive Casimir operator ck , except in the case of the er = r −1 exponent of Dr ,

which will be handled in the section on Dr . A trace of order 0 evaluates to dim(V ). We

normalize so that traces of degree 2 are equivalent to just adjoint lines.

ek +1

= ck = dim(V ) =

The structure constant f α
βγ

can be written as a diagram F as the difference of two traces

each with three adjoint edges coming off, differing only in the direction of the refer-

ence edges. We abbreviate it using Cvitanović’s notation of a big black dot. Given

two Clebsche vertices connected to single a reference edge, swapping the ends of the

adjoint edges can be written using an F node. This is just the Lie algebra relation

π(X )π(Y )−π(Y )π(X ) =π([X ,Y ]) applied to the reference representation:

F = − = − =

We say a diagram is simple if the connected components containing the I and O ver-

tices are each a primitive Casimir operator attached to some number of trees built out

of structure constants.
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4.2 Projections

When looking for generalized exponents, we want objects not in (g⊗g⊗S(g))G , where

these diagrams naturally live, but in (Vi ⊗S(g))G for a given irreducible component Vi .

We denote by Pri the projection operator that sends g⊗g into the subspace isomorphic

to Vi . Diagrammatically, such a projector looks like a diagram with two I vertices, two

O vertices and no dotted vertices. Similar to multiplication, an O vertex of the projec-

tor connects to the I vertex of the diagram being projected, but now also an I vertex of

the projector connects to the O vertex of the diagram being projected, yielding a new

diagram with a single I and a single O vertex:

Pri = Pri

I O

O I

Pri (F )=
Pri

F

I O

The projection operators, like the diagrams themselves, can be expressed entirely in

terms of traces of reference edges connected to adjoint edges, so the adjoint edges

between the projector and the diagram being projected can be expanded out, allowing

for diagrammatic evaluation of the projected diagram. See [Cv08] for details.

4.3 Symmetrization

For a generic diagram D , we consider the diagram D created by replacing the I vertex

in D by a dotted vertex. We also consider the half-symmetrization D̂ , which is the sum
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over all diagrams derived from D by swapping the I and one of the dotted vertices,

plus D itself. D̂ is the sum over all diagrams created by replacing one of the dotted

vertices in D by the I vertex.

D = D

I O

D = D

O

D̂ = D

I O

+ D

I O

+ D

I O

+ +

I

D

O

D belongs to (g⊗S(g))G , and thus decomposes into
∑

ak Dk where ak ∈ I (g) and Dk

is the diagram created by taking the diagram corresponding to the primitive Casimir

element ck and replacing one of the dotted vertices with the O vertex. Dk is a simple

diagram, and the ak is not connected to anything in Dk , so D can be written in terms

of a finite set of simple diagrams, and thus D̂ can also be written in terms of a finite

set of simple diagrams. Thus if the other terms in D̂ can be written in terms of simple

diagrams, so can D .
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Chapter 5

Invariant Tensors

5.1 General Statement for most Classical Lie Algebras

For Ar , Br and Cr there is a particularly elegant expression for all the elements of the

invariant tensors (T (g))G coming from the reference representations.

Theorem 5.1.1 (Invariant Tensors for Ar ,Br and Cr ). For g= Ar ,Br or Cr with the cor-

responding reference representation (V ,π), the elements of (T (g))G can be expressed as

tensor products of

trV (π(Xα1 )π(Xα2 ) · · ·π(Xαk ))Xα1 ⊗Xα2 ⊗·· ·⊗Xαk ∈ T (g)

along with permutations of the indices.

Diagrammatically, this corresponds to the statement that all diagrams with only

adjoint edges leaving the diagram are expressible as loops over the reference repre-
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sentation with adjoint edges attached, where no two loops are connected by an adjoint

edge.

5.2 Ar

Any invariant tensor in ⊗Ar can be written in terms of representations of Ar , invari-

ants of those representations, and Clebsches between representations. In turn, any

representation of Ar can be written in terms of V and V ∨, symmetrized and antisym-

metrized. Thus we can write any tensor in ⊗Ar in terms of V and the adjoint rep-

resentation. Diagrammatically, this corresponds to diagrams with only reference and

adjoint edges, with all the internal edges written as reference edges and all of the edges

leading out of the diagrams being adjoint edges. By the first fundamental theorem of

the invariant theory of SL(r+1) acting on the r+1-dimensional representation [FH04],

the possible vertices are the Clebsches converting between the adjoint representation

and V ⊗V ∨, and the two forms of the Levi-Civita tensor, one with r +1 reference edges

in, the other with r+1 reference edges out, corresponding to tensor that takes r+1 vec-

tors and returns a scalar, and the dual of that tensor. We write the Levi-Civita tensor

not as a vertex but as a black bar, following [Cv08]:

εa1,a2,...,ar+1=
a1a2

. . .
ar+1

ε∨= . . .
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Since the only edges that can lead out of the diagram have to be adjoint edges, corre-

sponding to the fact that all of our tensors are in T (Ar ), any instance of the Levi-Civita

tensor in the tensor must be matched by an instance of the dual of the Levi-Civita ten-

sor, as those are the only possible sources and sinks for reference edges. Furthermore,

given a Levi-Civita tensor and a dual of the Levi-Civita tensor, we can combine them

to yield reference edges without source or sink:

. . .

. . .
=

. . .

. . .

where the black bar across the reference edges on the right side of the previous equa-

tion means a full antisymmetrization of the corresponding vectors.

Hence since every Levi-Civita tensor is matched by a dual of the Levi-Civita tensor, we

can expand them into reference edges without Levi-Civita tensors. Since these refer-

ence edges cannot lead out of the diagram, they must close up. Hence we end up with

loops of reference edges with Clebsche vertices attaching these loops to adjoint edges

that lead out of the diagram. These are all traces of powers of the adjoint representa-

tion over V , as claimed.

5.3 Br

For Br we use the 2r +1-dimensional representation as the reference representation;

we have a symmetric form generally called the metric, which we denote by a white

circle:
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gab=
a b

=
b a

δb
a =

The invariance of the metric is given by

= −

Although Br has spinor representations, the group that acts on g is SO(2r +1) rather

than Spi n(2r +1) and hence the invariants must be expressible in terms of represen-

tations of SO(2r +1), which in turn can be written in terms of the reference representa-

tion V . Hence we can write all tensors in (T (Br ))SO(2r+1) as graphs with reference and

adjoint edges. By the first fundamental theorem of the invariant theory of SO(2r +1)

acting on the 2r +1-dimensional representation [FH04], the relevant vertices are Cleb-

sches between the adjoint and V ⊗V ∨, as well as the bilinear form and Levi-Civita ten-

sor for V . We will use the bilinear form on V to identify V with V ∨ and remove the

arrows from the reference edges.

Since the tensors have no reference indices, every reference edge must either form a

loop or end in a Levi-Civita tensor. Since the Levi-Civita tensors have odd degree, they

must appear in pairs, and so again we can cancel them to leave only possible metric

forms and dual metric forms. Since the metric form has two edges coming out and no

edges going in, for each instance of the metric in the diagram there must be a copy of

the dual of the metric form connected to it by a reference edge. The metric form can

be moved past an attached adjoint edge at the cost of a sign change, so the metric form
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and its dual can be placed next to each other and thus cancelled. Hence all instances

of the metric forms and its dual can be removed from a diagram in (T (Br ))SO(2r+1),

leaving only loops in the reference representation attached to adjoint edges.

5.4 Cr

For Cr , all representations of Sp(r ) can be written in terms of the 2r -dimensional rep-

resentation. By the first fundamental theorem of the invariant theory of SO(2r +1) act-

ing on the 2r +1-dimensional representation [FH04], the relevant vertices for the 2r -

dimensional representation are the Clebsches and the symplectic form and its dual.

Here we denote the symplectic form by a triangle:

ωab =
a b

= −
a b

= −
b a

The inverse ωab is denoted by a triangle with the arrows pointing away, with the con-

vention:

δb
a = = −

The invariance of the symplectic form is given by

= −

The Levi-Civita tensor can itself be replaced by a fully antisymmetrized multiple of

(ω)⊗r

a1a2
. . .

a2r

=
a1a2

. . .

. . .

a2r−1
a2r

25



where again the black bar on the right indicates full antisymmetrization. Similarly, the

dual of the Levi-Civita tensor can be replaced by copies of the dual of the symplectic

form. Hence the only relevant invariant is the symplectic form.

Since the symplectic form has two edges coming out and no edges going in, for each

instance of the symplectic in the diagram there must be a copy of the dual of the sym-

plectic form connected to it by a reference edge. The symplectic form can be moved

past an attached adjoint edge at the cost of a sign change, so the symplectic form and

its dual can be placed next to each other and thus cancelled. Hence all instances of the

symplectic forms and its dual can be removed from a diagram in (T (Cr ))Sp(r ), leaving

only loops in the reference representation attached to adjoint edges.

5.5 Other simple Lie algebras

For Dr , the Levi-Civita tensor does not need to appear in pairs since it has an even

number of reference edges attached to it. Hence there are invariants of Dr that are not

traces over the reference representation, including one of the primitive Casimir opera-

tors. While for r = 2k+1 the set of primitive Casimir operators for Dr can be expressed

as traces in one of the spins representations, for r even there are two degree r primi-

tive Casimir operators, and since there is up to scaling only one possible degree r fully

symmetrized trace in any single representation, there cannot be a single representa-

tion for which all of the invariant tensors in (T (Dr ))SO(2r ) can be expressed via traces.

The invariant tensors of Dr can be described similarly to those of the other classical
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Lie algebras, but due to these complications will be handled in the chapter on Dr .

For the exceptional Lie algebras, the author conjectures that the statement given above

does hold for them, but the above methods for showing such do not work due to the

existence of higher-order invariants in their reference representations that do not van-

ish as simply as the ones for Ar , Br and Cr .
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Chapter 6

The Ar case

As an example, we will use the case of A3, as A1 and A2 have been fully worked out in

[Ro01].

6.1 Diagrams for Ar

The reference representation V of Ar we take to be the r + 1-dimensional represen-

tation. Ar has exponents ei = i and primitive Casimir operators all of the form ci =

trV (M ei+1
d ):

ck =

ek +1

In our example, A3 has exponents 1,2 and 3, and has primitive Casimir elements of

degree 2,3 and 4.

28



The projection from V ⊗V ∨ to the adjoint representation can be represented diagram-

matically as

= − 1
r+1

which corresponds to removing the trace from a tensor in V ⊗V ∨.

6.2 Structure of the Family Algebra

The family algebra is generated as an algebra over I (g) by the following pieces, written

in diagrammatic notation:

Theorem 6.2.1 (Generators’). The family algebra Cg(Ar ) is generated over I (Ar ) by the

following:

M = 1
2

I O

− 1
2

I O

R2 =
I O

+
I O

S =
I O

However, the relations in terms of these generators are fairly ugly. In particular, the

relations for powers of M and R2 are complicated. Instead, we replace M and R2 with

the following:

Theorem 6.2.2 (Generators). The family algebra Cg(Ar ) is generated over I (Ar ) by the

following:
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K =
I O

L =
I O

Note that K = R2
2 +M and L = R2

2 −M , so the algebra generated by M ,R2 and S is

isomorphic to the algebra generated by K ,L and S.

For the relations, first we define the following elements:

Kk=
I O

k

Lk =
I O

k

As will be shown, Kk and Lk are expressible in terms of K , L and S in a uniform manner.

Then for all r , we get the following relations:

Theorem 6.2.3 (Relations). The following relations are sufficient for defining the family

algebra with the generators above

K L = LK , K S = LS, SK = SL

SKmLnS = (cm+n+1 − 1

r +1
cmcn)S

Kr+1 =
r−1∑
k=0

dr−k+1Kk , Lr+1 =
r−1∑
k=0

dr−k Lk

r∑
l=0

K r−l Ll =
r−2∑
k=0

dr−k

k∑
l=0

K k−l Ll

Note that these relations are not independent. The SKmLnS relations become re-

dundant when m +n > r . The Kr+1 relation minus the Lr+1 relation gives the K k Ll

relation times K −L, and hence the three relations are not independent. We present
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both the Kr+1 and the Lr+1 relation because each of them is easier to prove individu-

ally than any linear combination of them that isn’t a multiple of the K k Ll relation.

In our example, the r -dependent relations become

SKmRlnS = (cm+n−1 − cmcn

4
)S

Lk4 = d2K2 +d3K +d4,L4 = d2L2 +d3L+d4

K 3 +K 2L+K L2 +L3 = d2(K +L)+d3

Here d2 = c1/2, d3 = c2/3 and d4 = c3
4 − c2

1
8 .

6.3 Sufficiency of the Generators

As shown in the previous chapter, all of our elements of (⊗Ar )Ar are tensor products

of traces, so our family algebra elements are thus all tensor products of traces. We now

consider our three types of univalent vertices, the I , O and dotted vertices. A trace with

only dotted vertices on the ends of the attached adjoint edges is an element of I (Ar ),

so we only have to generate the connected components of the diagram with the I or O

vertices. But as we saw, the only diagrams we need are those whose connected com-

ponents are traces. Thus we need to generate all diagrams where both the I and the O

vertices are connected to the same trace, and all diagrams where they’re connected to

different traces.

First we show that, given Kk and Lk for all k, we can generate an element where the
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I vertex is connected to a trace of degree m and the O vertex is connected to another

trace of degree n, the two traces being distinct connected components:

I

. . .

m −1

. . .

n −1

O

=
I

. . .

m −1

O

×
I O

×
I

. . .

n −1

O
=Km−1SKn−1

Note that for a trace connected to the I vertex but not the O vertex, the direction of

the arrow is irrelevant, since all of the dotted vertices are symmetrized over. Similarly,

for a trace connected to the O vertex but not the I vertex, the direction of the arrow is

irrelevant. Hence Km−1S = Lm−1S and SKn−1 = SLn−1.

Now we show that Kk and Lk can be generated via K ,L and S. We shall show the deriva-

tion for Kk ; the Lk case is analogous.

Lemma 6.3.1. Kk can be generated over I (Ar ) by K and S

We first note that K1 = K , and then proceed by induction.

We assume that we can generate Km , Kn , Km−1 and Kn−1, and now we show that we

can generate Km+n :

KmKn =
I

. . .

m

. . .

n

O

=
I

. . .

m

. . .

n

O

− 1
r+1

I

. . .

m

. . .

n

O
= Km+n − 1

r+1 Km−1SKn−1
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The second line uses the projection from V ⊗V ∨ to the adjoint representation to re-

move the internal adjoint edge. Thus we can write

Km+n = KmKn + 1

r +1
Km−1SKn−1

So thus we can generate Kk for all k.

Finally, we just have to generate all of the other diagrams where both the I and O

vertices are connected to the same trace. These are all traces where the reference edge

attaches to the I vertex, then to m dotted vertices, then to the O vertex, and then to n

vertices.

KmLn =
I

. . . . . .

O

=
I

. . . . . .

O

− 1
r+1

I

. . . . . .

O

The first term in the last line is precisely what we want, and both KmLn and the last

term, Km−1SLn−1, can be generated from K ,L and S by assumption. Hence our gener-

ators are sufficient to generate the whole family algebra.

6.4 Proof of the Relations

We have already seen that the relations K S = LS and SK = SL hold, as special cases of

KmS = LmS and SKn = SLn . Now we can prove the other relations. We start with
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K L =
I O

=
I O

− 1
r+1

I O

where the traces in the second term of the last expression have only two adjoint edges

attached, and hence by our normalization become just adjoint edges.

LK differs only in the direction of the arrows on in the first term, so we end up with a

trace attached to the I vertex, then a dotted vertex, then the O vertex, and then another

dotted vertex. But the dotted vertices are interchangeable, so which of the two dotted

vertices we pass through first doesn’t matter. Hence the direction of the arrow doesn’t

matter and so K L = LK .

The SKmLnS relation follows from the expression for the product of KmLn computed

above:

SKmLnS =
I

. . . . . .

O

− 1
r+1

I

. . . . . .

O

=
. . . . . .

− 1
r+1

. . . . . .

I O

The contents of the parentheses, being unconnected to the I and O vertices, is an ele-

ment of I (Ar ), and counting the dotted vertices coming off each trace gives a factor of

cm+n−1 − 1
r+1 cmcn .

The other relations mentioned follow from variations of the Cayley-Hamilton iden-

tity. Since the reference representation is r +1-dimensional, for any X ∈ Ar we have a
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relation

[π(X )]r+1 =
r∑

k=0
dr+1−k (X )[π(X )]k

where dk is a degree k polynomial of the entries of π(X ). Thus for the matrix Md =

π(Xα)⊗Xα, we get a relation

M r+1
d =

r∑
k=0

dr+1−k M k
d

where now dk is an element of I (Ar ).

Diagrammatically, this translates as

. . .

r +1

=
r∑

k=0
dr+1−k

. . .

k

Now we note that Kk contains a reference line attached to k dotted vectors, and so for

Kr+1 we can make the above replacement. This yields the relation

Kr+1 =
r∑

k=0
dr+1−k Kk

And similarly for Lr+1.

The final relation comes from the decomposition of tr (M r+2
d ) into primitive Casimir

operators. We have the following relation, mentioned in the section on Casimir oper-

ators:

0 = ∑
n j m j=r+2

∏
j

1

m j !

(
− tr (M

n j

d )

n j

)m j

The coefficient of tr (M r+2
d ) on the right side is −1, so this gives an expression for

tr (M r+2
d ) in terms of the primitive Casimir operators, recalling that tr (M k+1

d ) = ck for
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1 ≤ k ≤ r .

We can translate this fact into one about the family algebra by writing all of the traces

as diagrammatic traces, connected only to dotted vertices, and then for each diagram

writing out all the ways to replace a dotted vertex by the I vertex and another dotted

vertex by the O vertex. This is equivalent to taking derivatives with respect to the vec-

tors corresponding to the edges connected to the I and O vertices.

Given a trace of degree d with only dotted vertices, there are d ways to replace one

dotted vertex by the I vertex, and all the ways yield the same diagram. Given a product

of traces with only dotted vertices, the number of ways to replace a dotted vertex by

the I vertex is equal to the total degree of the product, with each trace of degree di

yielding di identical diagrams.

Given a trace with the I vertex and d −1 dotted vertices, there are now d −1 ways to

replace a dotted vertex by the O vertex. Given a product of traces with one vertex be-

ing the I vertex and the rest dotted, the number of ways to replace a dotted vertex by

the O vertex is the degree of the product (which only counts the dotted vertices). Note

that we have two possibilities here: the O vertex could be on the same or on a different

trace as the I vertex.

Using the fact that

dk = ∑
mi ni=k

∏
i

1

mi !

(
− tr (Md )ni

ni

)mi

for k ≤ r +1, we get that the sum is thus

0 =∑
i , j

dr−i− j−2Ki SL j +
∑
i , j

dr−i− j Qi , j
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where Qi , j is a trace connected to the I vertex, then i dotted vertices, then the O vertex,

and then j dotted vertices, which we saw above can be written as

Ki L j + 1

r +1
Ki−1SL j−1

Writing out Km and Ln in terms of K ,L and S, we get that all of the terms involving S

automatically cancel out, leaving the relation

r∑
k=0

K k Lr−k =
r−2∑
j=0

dr− j

j∑
k=0

K k L j−k

6.5 The Sufficiency of the Relations

Here we show that the relations listed above are sufficient to determine the algebra,

i.e. that any further relations on the algebra can be derived from the relations already

given.

Lemma 6.5.1. No monic polynomial in K +L with coefficients in I (g) and degree less

than r can vanish.

Proof. If we consider K k Lm−k , lower the raised coordinate using the Killing form, and

then symmetrize over all of the indices, coordinate or otherwise, we end up with a

polynomial in Casimir elements of degree m+2 including a term of cm+2 and all other

terms products of Casimir elements of lower degree.

Now suppose that we have a monic polynomial in K +L with coefficients in I (g) and

degree m less than r . Then the leading terms, i.e. the terms involving no nontrivial
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Casimir elements, has positive coefficients for all terms of the form K k Lm−k and thus

the symmetrization of this polynomial then yields a polynomial in Casimir elements

with nonvanishing cm+2 coefficient.

Since m < r , we have that m+2 < r +2 and hence cm+2 is algebraically independent of

the Casimir elements of lower degree; hence the symmetrization cannot vanish, and

hence the polynomial in (L+R) cannot vanish.

Consider now the K k Ll relation. The leading term is

∑
k

K k Lr−k

and hence multiplying this leading term by (K +L)m yields a polynomial in K and L

that only has positive coefficients. In particular, the term K r Lm has positive coeffi-

cient in this polynomial. For m ≤ r , neither K r nor Lm can be reduced by the Kr+1 or

Lr+1 relations.

Hence we get that for m < r , (K +L)m times the K k Ll relation yields a relation in each

degree greater than r − 1 that cannot be deduced from the other relations. Since no

polynomial in K +L vanishes for degree less than r , we get that the relations of the

form (K +L)m times the K k Ll relation are themselves linearly independent from one

another over I (g). We also get a relation in degree 2r by squaring the K k Ll relation,

and this one is also linearly independent from the other relations since the K k Ll rela-

tion is itself a polynomial in K and L that is linearly independent from all polynomials

in K +L, just by comparing leading coefficients.

Now we show that there cannot be any other relations that are not in the ideal gener-
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ated by the ones listed. We do so by counting the number of I (g)-linearly independent

monomials.

Note that since K S = LS, we can write K r S = 1
r+1

∑
k

K k Lr−k S. Hence, using the K k Ll

relation, we can reduce Lr S to terms involving nontrivial Casimir elements. Hence we

get that K r SLl is not linearly independent over I (g) from terms of lower degree. Simi-

larly, K k SLr cannot be linearly independent.

Thus we get that our linearly independent monomials are K k SLl for 0 ≤ k, l ≤ r −1 and

K k Ll for 0 ≤ k, l ≤ r , minus one in each degree between r and 2r since (K +L)m times

the K k Ll relation gives K r Lm in terms of other monomials.

This yields a total of 2r 2 + r terms not known to be linearly dependent. If there are

more relations, then there will be fewer linearly independent terms.

The dimension formula for family algebras tells us that we should be getting

di mI (g)Cg(g) = ∑
λ∈W t (g)

mg(λ)2

For the adjoint representation, the weights with non-zero multiplicity are the roots,

each with multiplicity 1, and 0, with multiplicity equal to the rank of the algebra. This

gives us r (r + 1)+ r 2 = 2r 2 + r . Hence, since the relations given above limit us to at

most 2r 2 + r linearly independent elements and any further relations would reduce

that number, there cannot be any more relations.

Thus we can determine an I (g)-linear basis for the family algebra in terms of K ,L and

S. Using the original basis M ,R2 and S, we rewrite the set as

M mRn
2 for m ≤ er +1,n ≤ r −1
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Rm
2 SRn

2 +Rn
2 SRm

2 for m ≤ n ≤ r −2

Rm
2 SRn

2 −Rn
2 SRm

2 for m < n ≤ r −1

Note that we can define an element Rk for k ≤ r , where Rk = Kr +Lk , which in turn can

be written as Rk
2 plus other terms. Hence we can write write our basis as

M mRk for m ≤ er +1,k ≤ r −1

RmSRn +RnSRm for m ≤ n ≤ r −2

RmSRn −RnSRm for m < n ≤ r −1

In our example of A3, we have the following basis

1, M ,R2, M 2, MR2,R2
2 ,S, M 3, M 2R2, MR2

2 ,R2S +SR2,

R2S −SR2, M 4, M 3R2, M 2R2
2 ,R2SR2,R2

2S −SR2
2

M 4R2, M 3R2
2 ,R2

2SR2 −R2SR2
2 , M 4R2

2

6.6 Generalized Exponents

For the irreducible component of g⊗g∨ with highest weightλ, there is a projection op-

erator Pλ that projects from g⊗g∨ to the component of type Vλ. See [Cv08] for details.

Using the Killing form, we identify g∨ with g and consider g⊗g. As a g-module this de-

composes into ∧2g and S2g, the alternating and symmetric tensor square respectively,

which then further decompose into irreducible representations.
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For r = 1, ∧2g is isomorphic to g itself, and hence is the adjoint representation, with

generalized exponent 1. S2g decomposes into a trivial representation and a repre-

sentation of dimension 5; these representations have generalized exponents 0 and 2

respectively.

For r = 2, ∧2g decomposes into a copy g, with generalized exponents 1 and 2, and two

dual 10-dimensional representations with weights 3ω1 and 3ω2 respectively and each

with generalized exponent 3. S2g decomposes into the trivial representation with gen-

eralized exponent 0, another copy of g, again with generalized exponents 1 and 2, and

a 27-dimensional representation with generalized exponents 2,3 and 4. See [Ro01]

for details. Note that Rozhkovskaya uses a different basis, generated by harmonic el-

ements. Her M1 is proportional to M , her N1 is proportional to R2, and her N2 is pro-

portional to 3R2
2 +3M 2 +S + c1.

For r ≥ 3, the decomposition of g⊗ g is uniform. ∧2g decomposes into a copy of g

and two dual representations with highest weights 2ω1 +ωr−1 and ω2 + 2ωr respec-

tively, while S2g decomposes into the trivial representation, another copy of g, and

two representations with highest weights ω2 +ωr−1 and 2ω1 +2ωr respectively. In an

orthonormal basis for g, the corresponding elements of the family algebra are actually

symmetric or antisymmetric as matrices.

The Lk R l reduction relation gives us a relation ∼ on elements in Vω2+ωr−1 ; applying the

differential operator D =
(
∂

xα c2

)
∂
∂xα

gives a relation equivalent to the multiples of the

Lk R l relation times L +R, modulo the Lr+1 and Rr+1 relations. Since D transforms as
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the trivial representation, D applied to both sides of ∼ again gives a relation between

elements of the Vω2+ωr−1 representation; hence we get that the generalized exponents

of Vω2+ωr−1 plus a copy of {r, . . . ,2r } gives the generalized exponents of V2ω1+2ωr .

Along with the fact that Vω1+ωr has generalized exponents 1, . . . ,r gives us enough in-

formation to get the full set of generalized exponents for the representations in ques-

tion, given in table 1. Note that the two copies of Vω1+ωr each give an independent set

of harmonic basis elements, one symmetric, one antisymmetric. We get that PV (q)

is equal to the Kostka polynomial for V , which are computable from Young Tableaux

[DLT94]. Hence we can easily check the results given.

Table 6.1: Generalized Exponents in Cω1+ωr (Ar )

V PV (q)

V0 1

Vω1+ωr q[r ]q

Vω2+ωr−1 q2 [r+1]q [r−2]q

[2]q

V2ω1+2ωr q2
(r+1

2

)
q

V2ω1+ωr−1 q3
(r

2

)
q

Vω2+2ωr q3
(r

2

)
q
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Table 6.2: Generalized Exponents in Cω1+ω3 (A3)

V PV (q)

V0 1

Vω1+ωr q +q2 +q3

V2ω2 q2 +q4

V2ω1+2ω3 q2 +q3 +2q4 +q5 +q6

V2ω1+ω2 q3 +q4 +q5

Vω2+2ω3 q3 +q4 +q5
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Chapter 7

The Br , Cr case

The cases of Br and Cr end up very similar, so we treat them both here. We start with

Cr since it is somewhat simpler. As with the previous chapter, we use the case of r = 3

as an example.

7.1 Diagrams

As in the Ar case, we can write the primitive Casimir operators as traces

ck =

ek +1

Because the invariant changes sign every time it passes an adjoint edge, we get that

the odd-degree traces vanish, matching the fact that Cr only has odd-degree expo-

nents and hence even degree primitive Casimir elements. For Cr , the exponents are

ei = 2i −1, so that ck = trV (M 2i
d ).
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Similar to the Ar case, we have a Cayley-Hamilton identity on our matrices in the ref-

erence representation. Defining

dk = ∑
2ni mi=k

1

mi !

(
− cni

2ni

)mi

where mi ni indicates a sum over distinct ni , we get that

∑
k

d2r−kQk = 0

where

Qk=
k

We call this the matrix Cayley-Hamilton identity, to distinguish it from the Casimir

Cayley-Hamilton identity

∑
2

ni mi = 2r +2
1

mi !

(
− cni

2ni

)mi

= 0

which we get by multiplying the matrix Cayley-Hamilton identity by M 2 and then tak-

ing traces in the 2r -dimensional representation.

The adjoint projection for getting rid of internal adjoint edges is also different:

= 1
2 + 1

2

Note the directions of the symplectic forms; the first term on the right-hand side has

both symplectic forms attached to the top edge, where they cancel.

Now we wish to show that the tensor invariants in (T (Cr ))Sp(r ) are generated by tensor

products of traces over the reference representation.
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All finite dimensional representations of Cr can be written in terms of the reference

representation, so we only have to worry about tensors with adjoint and reference

edges. The vertices are Clebsches between the adjoint and V ⊗V ∨, and the Levi-Civita

tensor on V .

Note that the reference representation, being of dimension 2r , has a Levi-Civita tensor

with 2r vectors coming out of it. Moreover, taking r copies of the symplectic form and

antisymmetrizing all of the edges yields a multiple of the Levi-Civita tensor. Hence the

Levi-Civita tensor can be replaced by the symplectic form. Thus we only have loops

of the reference edges with adjoint edges attached, i.e. traces over the reference repre-

sentation.

7.2 Generators

The main result about the generators for Cr is that there are again three of them:

Theorem 7.2.1 (Generators). The family algebra for the adjoint representation of Cr is

generated by

M =
I O

R2=2

I O

S =
I O

Because of the symplectic form, we get that L and R are no longer independent
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elements of the family algebra; in particular, M = L = −R and there is no other inde-

pendent degree 1 family algebra element.

Proof. For ease of calculation, again we use an alternate object instead of R2. We write

Tk,l to be a trace attached to the I vertex, k dotted vertices, the O vertex, and then l

dotted vertices, in that order. Thus M is T1,0. In this notation, R2 = 2T2,0.

Using the symplectic form to swap the direction of the reference tensor, we get that

Tk,l = (−1)k+l Tl ,k

and via the adjoint projector we get

Ti , j Tk,l =
1

2
(Ti+k, j+l + (−1)k+l Ti+l , j+k )

In particular,

MTk,l =
1

2
(Tk+1,l + (−1)k+l Tl+1,k )

We see the sufficiency of the generators as given by noting that

M 2 = 1

2
(T2,0 −T1,1)

so T2,0 and T1,1 can be generated from M and R2, and then that

Tk+1,l = MTk,l −MTl−1,k+1 +T2,0Tk,l−1

so we can generate any Tk,l via inducting from our base cases.

The only remaining possible elements are those where the I and O vertices are con-

nected to unconnected traces. These we can achieve by S. In particular, we can realize
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an element where the I vertex is attached to a trace of degree k and the O vertex to a

trace of degree l by Tk−1,0STl−1,0.

7.3 Relations

Several relations are familiar from the Ar case:

Theorem 7.3.1. The following relations hold for Cr :

SM = MS = 0

R2M = MR2

r∑
k=0

d2r−2k T2k,0 = 0

Define

Q2k =
2k∑

l=0
Tl ,2k−l −

k−1∑
l=0

T2l ,0ST2k−2l−2,0

Then

r∑
k=0

d2r−2kQ2k = 0

In our example, the r -dependent relations become

−T6,0 +d2T4,0 +d4T2,0 +d6 = 0

2T6,0 +2T5,1 +2T4,2 +T3,3 −T4,0S −T2,0ST2,0 −ST4,0

= d2(2T4,0 +2T3,1 +T2,2 −T2,0S −ST2,0)+d4(2T2,0 +T1,1 −S)+d6
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The first two relations can be seen by expanding out the relevant diagrams, or in the

case of the second relation by expanding out the Tk,l relations.

For the third relation, we have the matrix Cayley-Hamilton relation, which, as in the Ar

case, gives us a relation on reference edges connected by adjoint edges to only dotted

vertices. For Cr , the identity only involves even powers of the matrix, which translates

to an even number of dotted vertices. T2k,0 involves a reference edge connected to 2k

dotted vertices, and thus we get the third relation.

The fourth relation comes from taking the decomposition of tr (M 2r+2
d ) into primitive

Casimir operators, interpreting it as diagrams, and replacing dotted vertices with I and

O vertices, analogous to the LmRn relation for Ar .

Note that the third relation has no mentions of S, and the fourth relation has both

ST2k,0 and T2k,0S. Thus if P times the third relation yields R l
2 of the fourth relation, we

get that l = r and thus we get that at the very least the fourth relation yields r relations

that are independent of the third relation.

We now use a counting argument. We can form objects of the forms Ti , j and Tk,0STl ,0.

We note that if k or l is odd, then Tk,0STl ,0 vanishes, due to the symplectic form. So we

really only have Ti , j and T2k,0ST2l ,0. By the third relation, we can limit i + j to be less

than 2r , and we can limit i ≤ j since Ti , j and T j ,i are not independent. We can simi-

larly limit k and l to be less than r . So we have Ti , j for 0 ≤ i ≤ j ≤ 2r −1 and T2k,0ST2l ,0

for 0 ≤ k, l ≤ r −1. This yields a total of 3r 2 + r elements, from which the fourth rela-

tion removes another r elements, to yield 3r 2 linearly independent elements. By the
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dimension formula for family algebras, we should be getting r 2 +2r 2 = 3r 2 elements.

Since there are no more elements to remove, there are no more relations.

We will thus take as our basis Ti , j for 0 ≤ i ≤ j ≤ 2r − 1, T2k,0ST2l ,0 +T2l ,0ST2k,0 for

k, l ≤ r −2 and T2k,0ST2l ,0 −T2l ,0ST2k,0 for k, l ≤ r −1. To make it more in line with the

results for other Lie algebras, we write this as

M mRn
2 for m ≤ er +1,n ≤ r −1

Rm
2 SRn

2 +Rn
2 SRm

2 for m ≤ n ≤ r −2

Rm
2 SRn

2 −Rn
2 SRm

2 for m < n ≤ r −1

Note that we can define an element Rk for k ≤ r as the trace that attaches to the I

vertex, ek −2 dotted vertices, and then to the O vertex which in turn can be written as

Rk
2 plus other terms. Hence we can write write our basis as

M mRk for m ≤ er +1,k ≤ r −1

RmSRn +RnSRm for m ≤ n ≤ r −2

RmSRn −RnSRm for m < n ≤ r −1

So for C3, the basis is

1, M , M 2,R2,S, M 3, MR2, M 4, M 2R2,R2
2 ,R2S +SR2,R2S −SR2,

M 5, M 3R2, MR2
2 , M 6, M 4R2, M 2R2

2 ,R2SR2,R2
2S −SR2

2 , M 5R2,

M 3R2
2 , M 6R2, M 4R2

2 ,R2
2SR2 −R2SR2

2 , M 5R2
2 , M 6R2

2

Note that the only difference, at least in the labelling, between this and the basis for

the family algebra for A3 is the maximum power of M allowed.

50



7.4 Br

Now we address the Br case. We have a change in the adjoint projector:

= 1
2

− 1
2

We still get a sign change whenever we move the bilinear form past an adjoint edge

and hence the primitive Casimir operators are all of even degree and follow the same

Casimir Cayley-Hamilton identity. The change in the adjoint projector and the sym-

metry of the bilinear form make the Tk,l objects for the family algebra for Br follow the

same rules as the ones for the Cr family algebra. So we get that the family algebra for

Cr and the family algebra for Br are almost isomorphic. There is one slight difference

in the relation from the matrix Cayley-Hamilton identity.

Since the reference representation for Br is 2r +1-dimensional, we expect that the ma-

trix Cayley-Hamilton relation has degree 2r +1, and indeed it does, with no relation of

lower degree working for all elements of Br . Hence we get a relation

∑
k

d2r+1−(2k+1)T2k+1,0 = 0

However, this relation can itself be reduced to a relation in lower degree. First we note

that d2r+1−(2k+1) = d2r−2k . Secondly, we note that

T2k+1,0 = M
2k∑

l=0
T2k−l ,l

We further note that

2k∑
l=1

T2k−l ,l = 2M
k∑

j=1
T2k−2 j ,2 j−1
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Hence we look at

Q =
r∑

k=0
d2r−2k

(
T2k,0 +2M

k∑
j=1

T2k−2 j ,2 j−1

)

Multiplying this by M yields the matrix Cayley-Hamilton relation, i.e. this expression

times M vanishes. Now we look at this object restricted to the Cartan subalgebra.

Since M is invertible on the vector part, since the entry in the xα, xα position is α∨, we

get that since MQ vanishes on the vector part, Q must vanish on the vector part. We

also note that M vanishes on the torus part, so the torus part of Q is

r∑
k=0

d2r−2k T2k,0

Since the primitive Casimir operators for Br restricted to the Cartan subalgebra are

identical to the primitive Casimir operators for Cr restricted to the Cartan subalgebra,

we get that since
r∑

k=0
d2r−2k T2k,0 vanishes on the torus for Cr , it also must vanish for

Br .

So Q restricted to the Cartan subalgebra must vanish on both the vector and torus

parts, and hence vanishes everywhere. Since the restriction map is an injection, Q it-

self must vanish. Hence we have a relation in degree 2r rather than 2r +1.

Again, this relation involves no terms of S, so again the Casimir Cayley-Hamilton iden-

tity yields r separate relations, and the counting argument above still holds. Hence we

get that the relations for Br are as follows:

Theorem 7.4.1. The following relations hold for Br :

SM = MS = 0
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R2M = MR2

r∑
k=0

d2r−2k

(
T2k,0 +2M

k∑
j=1

T2k−2 j ,2 j−1

)
= 0

Define

Q2k =
2k∑

l=0
Tl ,2k−l −

k−1∑
l=0

T2l ,0ST2k−2l−2,0

Then

r∑
k=0

d2r−2kQ2k = 0

Hence the family algebra for Br has the same I (g)-linear basis as the family algebra

for Cr , with the two family algebras differing only in the algebraic relations.

In terms of the example of B3, we have the first r -dependent relation being

−T6,0 −2M(T4,1 +T2,3 +T0,5)+d2T4,0 +2d2M(T2,1 +T0,3)+d4T2,0 +2d4MT0,1 +d6 = 0

and the other r -dependent relation being identical to the case for C3. Similarly, the

basis elements are identical to those for C3.

7.5 Generalized Exponents

The decomposition of the tensor square of the adjoint representation into irreducible

components is very similar for Br and Cr . Both decompose into a symmetric part and

an antisymmetric part, with the symmetric part decomposing into four irreducible

components and the antisymmetric part decomposing into two. See [Cv08] for details

and explicit projection operators.
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Applying the projection operators to the basis elements computed above, we get that

P2(T2k,0ST2l ,0 +T2l ,0ST2k,0) depends only on k + l , and that P2(Ti , j ) is a linear com-

bination of the P2(T2k,0ST2l ,0 +T2l ,0ST2k,0) terms. So we get that the component cor-

responding to V2 is spanned by P2(T2k,0S + ST2k,0). Note that while there is a rela-

tion involving T2r−2,0S + ST2r−2,0S, that relation occurs in V2 and thus we get that

P2(T2r−2,0S + ST2r−2,0) is linearly-independent from the set of P2(T2k,0S + ST2k,0) for

k < r −1.

Since V2 corresponds to S2V , we get that V2 should have highest generalized exponent

2r and have r generalized exponents. Hence we get that the generalized exponents for

V2 are thus q2[r ]q2 .

P4(T2k+1,2l+1) =−P4(T2k,0ST2l ,0 +T2l ,0ST2k,0)

=− 1

6
(T2k,0ST2l ,0 +T2l ,0ST2k,0)− 2

3
T2k+1,2l+1

and P4(T2k,2l ) = 0. So V4 has a generalized exponent for each pair k, l such that k, l ≤

r −2. Hence PV4 (q) = q2
(r

2

)
q2 .

V1 is the trivial representation, and thus has a single generalized exponent of degree

0. So all the rest of the degrees of the symmetric basis elements give generalized expo-

nents for V3. Thus we have that the generalized exponents of V3 are q2[r +1]q2 [r −1]q2 .

The antisymmetric elements yield degrees q[r ]2
q2+q4

(r
2

)
q2 . The adjoint representation

has exponents q[r ]q2 , so we are left with V6 having exponents q3[3]q
(r

2

)
q2 .
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Table 7.1: Generalized Exponents in Cg(Br /Cr )

V PV (q)

V1 1

V2 q2[r ]q2

V3 q2[r +1]q2 [r −1]q2

V4 q2
(r

2

)
q2

V5 q[r ]q2

V6 q3[3]q
(r

2

)
q2

Table 7.2: Generalized Exponents in Cg(B3/C3)

V PV (q)

V1 1

V2 q2 +q4 +q6

V3 q2 +2q4 +2q6 +2q8 +q10

V4 q2 +q4 +q6

V5 q +q3 +q5

V6 q3 +q4 +2q5 +q6 +2q7 +q8 +q9
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Chapter 8

The Dr case

Here we use both r = 3 and r = 4 as examples, as they have somewhat different behav-

ior, and also because r = 3 has already been discussed, via the Ar
∼= Dr isomorphism.

8.1 Diagrams

The first fundamental theorem for SO(2r ) acting on the 2r -dimensional representa-

tion tells us that the only invariants are a symmetric bilinear form and a Levi-Civita

tensor. Thus the projection from V ⊗V ∨ to the adjoint representation is the same as

that for Br . Unlike in the Br case, the Levi-Civita tensor has an even number of edges

coming out of it, and so we can have an element of (T (Dr ))SO(2r ) with a single Levi-

Civita tensor in it, and unlike in the Cr case, the Levi-Civita tensor cannot be reduced

to the bilinear form. As a result, the set of primitive Casimir operators for Dr cannot be

expressed solely as traces over the reference representation. Instead, we have traces of
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2k adjoint edges for 1 ≤ k ≤ r −1, and a degree r Casimir, called the Pfaffian, built from

the Levi-Civita tensor.

P f =

r

Note that since the 2r reference edges going into the Levi-Civita tensor are fully anti-

symmetrized, the adjoint edges attached to the Pfaffian are automatically fully sym-

metrized as a tensor, unlike the traces which have to be symmetrized separately.

We now have a decomposition of tr (M 2r
d ) into lower order Casimir operators. We get

∑
ni mi=2r

∏
i

1

mi !

(
− tr (Md )ni

ni

)mi

= 4(−1)r
(

P f

r !

)2

The rest of the elements of (T (Dr ))SO(2r ) are either tensor products of traces, or tensor

products of traces with tensors that like the Pfaffian are built from a single Levi-Civita

tensor, only with multiple adjoint edges attached to each reference edge instead of just

one. Note that since the Levi-Civita tensor is fully antisymmetric, the ends of the ref-

erence edges are antisymmetrized, so there must be an odd number of adjoint edges

attached to each one.

8.2 Generators

The generators of Br can be used to generate all of the elements of the family algebra

that do not involve the Pfaffian, but always yield diagrams that only have traces. To get

the diagrams that involve the Pfaffian, we add a fourth generator, P :
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P =
I

r −2

O

Since the Pfaffian is independent of the trace Casimir operators, we cannot hope to

build P out of the elements written as M , R2 and S. So we have to have it as a fourth

generator.

In the case of r = 3, the Pfaffian looks like

P =
I O

In the r = 4 case, it looks like

P =
I O

8.3 Sufficiency of the Generators

The same reasoning as used for Br shows that any element of the family algebra built

only from traces in the reference representation can be generated by M ,R2 and S.

Hence we consider elements that contain a Levi-Civita tensor.

Suppose our element A has a single Levi-Civita tensor, and assume that for all ele-

ments B such that deg(B) < deg(A), B can be generated by M ,R2,S and P . All the

reference edges going out of the Levi-Civita tensor must go back in, and must have
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an odd number of adjoint edges attached. The reference edges are all fully antisym-

metrized, so for a given loop we can insert an adjoint edge projector.

. . . = . . .

Suppose we have such a loop L with 2k +1 adjoint edges attached to it. If the I vertex

is attached to the loop, then we can insert an adjoint projector and write the family

algebra element as A = Tm,2k−mB where B has one copy of the Levi-Civita tensor. By

construction, deg(B) = deg(A)− 2k and furthermore has only one adjoint edge con-

nected to the loop corresponding to the loop L on our original element. Similarly, if

the O vertex is attached to the loop, then we can construct a B such that A = BTm,2k−m

for some m. Since deg(Q) < deg(A) in both cases, Q must be generated by M ,R2,S and

P , and thus A must also be generated by them.

Now consider the case where both the I and O vertices are attached to loops that only

have one adjoint edge attached to them. Using the symmetrization process outlined

in chapter 3, we can construct A and Ã. A can be written in terms of primitive Casimir

operators, i.e. in terms of M ,R2,S and P . The terms in Ã either have the I vertex

attached to a loop with only one adjoint edge attached or attached to a loop with mul-

tiple adjoint edges attached. In the latter case, we can rewrite the term as Tm,2k−mB for

some B of lower degree, while in the former case we get another copy of A, since the

reference edges connected to the Pfaffian are fully antisymmetrized, so the loops are

distinguishable only by how many adjoint edges are attached and to what the other

ends of those adjoint edges attach. So we have a nonzero multiple of A being equal
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to something expressible in terms of M ,R2,S and P , plus terms of the form Tm,2k−mB

where B has degree less than A. Since deg(B) < deg(A) for all of the B , they must be

generated by M ,R2,S and P . Thus A must also be generated by them.

Hence M ,R2,S and P generate the entire family algebra.

8.4 Relations

Several of the relations for M ,R2 and S are identical to those from Br :

MR2 = R2M

MS = SM = 0

We have a relation coming from the Cayley-Hamilton identity for Casimir operators:

2PSP +2P f P +
r−1∑
k=0

d2r−2k−2Q2k = 0

Expanding out Q2k gives us that we can read this relation as expressing Rr−2
2 S +SRr−2

2

in terms of other elements.

The relation also gives us that Rr−1
2 S decomposes, since the resulting diagram has a

trace of degree 2r attached to the I vertex but not the O vertex, and thus is it sym-

metrizes to tr (M 2r
d ), which decomposes, and all of the diagrams in the symmetriza-

tion are the equal. Similarly, SRr−1
2 also decomposes.

We also have additional relations involving P :

PS +PT1,1 = 2P f
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Defining P2k =Q2k −
k−1∑
l=0

T2l+1,2k−2l−1 for k ≥ 1 and P0 = 1, we get

P 2 + ∑
k=0

(−1)r−1d2r−4−2k P2k = 0

So our possibly linearly independent elements are

M mRn
2 for m ≤ 2r −2,n ≤ r −2

M mP for m ≤ 2r −2

Rm
2 SRn

2 +Rn
2 SRm

2 for m ≤ n ≤ r −3

PSRm
2 +Rm

2 SP for m ≤ r −3

Rm
2 SRn

2 −Rn
2 SRm

2 for m < n ≤ r −2

PSRm
2 −Rm

2 SP for m ≤ r −2

PSP

Similarly to Ar , Br and Cr , we can define Rk to be an element related to the primitive

Casimir operators, although here we have to be careful about indexing. For k 6= ⌈ r
2

⌉
, we

define Rk to be the trace that attaches to the I vertex, then to the ek −1 dotted vertices,

and then to the O vertex, while for Rd r
2e we use P . Then we can rewrite the basis as

M mRk for m ≤ er +1,k ≤ r −1

RmSRn +RnSRm for m ≤ n ≤ r −2

RmSRn −RnSRm for m < n ≤ r −1
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This gives a total of 3r 2−2r elements, which matches the number of elements given by

the dimension formula. Note that we could expand PSP by expanding the two Levi-

Civita tensors into antisymmetrized reference edges, but including PSP makes the

full set easier to describe, as well as better matching the list of linearly independent

elements of A3 = D3. In particular, for D3 we have

1, M ,P, M 2, MP,R2,S, M 3, M 2P, MR2,PS +SP,

PS −SP, M 4, M 3P, M 2R2,PSP,R2S −SR2,

M 5, M 4P, M 3R2,PSR2 −R2SP, M 4R2

The P here corresponds to R2 for A3, with R2 here taking the place of R2
2 for A3. For

r = 4, we have

1, M , M 2,R2,P,S, M 3, MR2, MP,

M 4, M 2R2, M 2P,R2
2 ,R2S +SR2,PS +SP,

R2S −SR2,PS −SP, M 5, M 3R2, M 3P, MR2
2 ,

M 6, M 4R2, M 4P, M 2R2
2 ,R2SR2,PSR2 +R2SP,PSP,

R2
2S −SR2

2 ,PSR2 −R2SP, M 5R2, M 5P, M 3R2
2 ,

M 6R2, M 6P, M 4R2
2 ,R2

2SR2 −R2SR2
2 ,PSR2

2 −R2
2SP,

M 5R2
2 , M 6R2

2
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8.5 Generalized Exponents

With a few low-dimensional exceptions, for Dr the g⊗g representation decomposes

identically to the Br case: the symmetric subspace of g⊗g decomposes into four irre-

ducible representations, one being the trivial representation, and the antisymmetric

subspace decomposes into two representations, one being the adjoint representation.

The projection operators are identical, except instances of 2r +1 are replaced by 2r . So

we label the six representations P1 through P6, matching the notation from Br . For D3,

the antisymmetric subspace decomposes into three irreducible representations due to

the Pfaffian. This matches the decomposition of A3. For r > 3, the Pfaffian does not

appear in any projection operators, so there six components listed are all irreducible.

The projections of the elements involving only M ,R2 and S are the same as in the Br

case, so we can just examine the elements involving P .

P2(P M 2k ) and P2(PSRk
2 ) both decompose into lower order terms. P2(PSP ) can be

written in terms of P2 applied to elements generated by M ,R2 and S. Hence V2 has

generalized exponents PV2 (q) = q2[r −1]q2 , matching the Br case but with [r −1]q2 in-

stead of r due to the decomposition of the degree 2r trace.

P4(P M 2k ) reduces to PSRk
2 for k positive, as does P4(PSP ). P4(PSRk

2 ) expands as PSRk
2

plus lower order terms. Hence we get that V4 has generalized exponents

PV4 (q) = q2

(
r −1

2

)
+qr−2[r −1]q2
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V3 then has the rest of the positive degree symmetric elements, giving it generalized

exponents

PV3 (q) = q2[r ]q2 [r −2]q2 +qr [r −1]q2 +q2r−2

The adjoint representation has exponents PV5 (q) = q[r −1]q2 + qr−1 and therefore V6

has the remaining antisymmetric degrees, giving it generalized exponents

PV6 (q) = q3[3]q

(
r −1

2

)
q2

+qr [2r −1]q

Table 8.1: Generalized Exponents in Cg(Dr )

V PV (q)

V1 1

V2 q2[r −1]q2

V3 q2[r ]q2 [r −2]q2 +qr [r −1]q2 +q2r−2

V4 q2
(r−1

2

)+qr−2[r −1]q2

V5 q[r −1]q2 +qr−1

V6 q3[3]q
(r−1

2

)
q2 +qr [2r −3]q

64



Table 8.2: Generalized Exponents in Cg(D3)

V PV (q)

V1 1

V2 q2 +q4

V3 q2 +q3 +2q4 +q5 +q6

V4 q +q2 +q3

V5 q +q2 +q3

V6 2q3 +2q4 +2q5

In the r = 3 case, P4 is a copy of the adjoint representation, and P6 decomposes

into two antisymmetric representations that are dual to each other, giving the results

for A3.
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Table 8.3: Generalized Exponents in Cg(D4)

V PV (q)

V1 1

V2 q2 +q4 +q6

V3 q2 +3q4 +4q6 +3q8 +q10

V4 2q2 +2q4 +2q6

V5 q +2q3 +q5

V6 q3 +2q4 +3q5 +2q6 +3q7 +2q8 +q9
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Chapter 9

Restrictions to Subalgebras

9.1 The Weyl Group Action

The torus part is made of r × r matrices, and as a Weyl-group module is h⊗h. So it

decomposes as 1⊕S2h⊕λ2h, where S2h is the traceless symmetric square of h and λ2h

is the second alternating power. For the non-simply laced algebras Br ,Cr ,G2 and F4

we further divide the vector part into a long part, where the coordinates are long roots,

and a short part, where the coordinates are short roots.

Each part of an h-restricted family algebra element is W -invariant, where W acts on

S(h) in the natural way. Since the coordinates of each part form a representation of W ,

we can find the W -irreducible components of the subspace of g generated by those

coordinates. There is a moduleM(h) such that S(h) ∼= (S(h))W ⊗M(h) andM(h) affords

the regular representation; for an irreducible W -representation U , the fake degrees
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[Lu77] are the exponents with multiplicity of the polynomial

PU (q) =∑
k

dim(HomW (U ,MK (h))qk

and are analogous to generalized exponents for a Lie algebra. They describe the de-

grees of a basis for (BV (h))W , although they do not explicitly give a way to find a basis.

Usually generic degrees are the objects calculated, but fake degrees are computable

from generic degrees [Lu77].

Elements of (BV (h))W can be turned into elements of Cg(g) by either adding elements

on different parts together and trying to adjust for the lack of G-invariance or by mul-

tiplying an element by a G-invariant object whose Cartan restriction vanishes on all

but one part and then extending from h to g.

Here we show how PV (q) for the representations V calculated above can be expressed

in terms of the fake degrees of V T . We use P to denote both generalized exponents of

g representations and fake degrees of W representations. The decomposition of V T

into representations of W can be extracted by setting q = 1, with the labels of P denot-

ing the labels of the representation. For Ar , the subscripts indicate partitions. For BCr

and Dr , the subscripts indicate pairs of partitions (allowing empty partitions or entries

of 0) α and β such that |α|+ |β| = r ; for BCr l (α) = l (β)+1 and for Dr , l (α) = l (β). The

− in φr,− indicates the empty partition.

The decomposition for the exceptional Lie algebras will be discussed in the next chap-

ter.
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Table 9.1: Generalized exponents as fake degrees for Ar

V PV (q)

V0 P(r+1)(q)

Vω1+ωr Pr 1(q)

Vω2+ωr−1 P(r−1)2(q)

V2ω1+2ωr q2P(r+1)(q)+q2Pr 1 +q2P(r−1)2(q)

V2ω1+ωr−1 P(r−1)11(q)

Vω2+2ωr−1 P(r−1)11(q)

Table 9.2: Generalized exponents as fake degrees for BCr

V PV (q)

V1 Pr,−(q)

V2 q2Pr,−(q)+P(r−1)1,0(q)

V3 q2Pr,−(q)+ (2q2 +q2r )P(r−1)1,0(q)+q2P(r−2)2,0(q)+P(r−2)11,00(q)

V4 P(r−2)0,2(q)

V5 P(r−1)0,1(q)

V6 P(r−2)00,11(q)+q2r−2P(r−1)0,1(q)+P(r−2)1,1(q)
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Table 9.3: Generalized exponents as fake degrees for Dr

V PV (q)

V1 Pr,0(q)

V2 P(r−1)1,00(q)

V3 q2Pr,0(q)+q2P(r−1)1,00(q)+ (q2 +q4)P(r−2)2,00(q)

V4 P(r−2),2(q)+qr−1P(r−1),1(q)

V5 P(r−1),1(q)

V6 P(r−2)0,11(q)+P(r−2)1,10(q)
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9.2 Restriction to Maximal Subalgebras

Directly computing with the exceptional Lie algebras can be difficult due to their size

and the complexity of their descriptions. Thus it is often easier to consider classical

maximal subalgebras of the exceptional Lie algebras, and then try to extend results on

the classical cases to the exceptional cases. Note that the maximal subalgebras are not

always simple, but can at least be chosen to be direct sums of classical simple Lie al-

gebras.

For h a Cartan subalgebra of g, pick a maximal subalgebra k⊂ g with the same Cartan

subalgebra such that the closure of the roots of k under WG is the set of roots of g. We

can take a basis of h and root vectors of k and g respectively as basis elements for k and

g; denote by V the span of the root vectors of g that are not root vectors of k. Let K ⊂G

be the group corresponding to k.

We get a homomorphism r es : S(g) → S(k) by sending V to 0. We also get a map

M at (g) → M at (k) by sending A ∈ M at (g) to the submatrix where the coordinates are

both in k. Combining these two maps gives a map

Res : (M at (g)⊗S(g))G → (M at (k)⊗S(k))K

In a matrix in (M at (g)⊗S(g))G , for a non-zero entry with one coordinate in k and one

in V , the entry must be in the kernel of r es. Hence we get that Res is an algebra ho-

momorphism. For A ∈ (M at (g)⊗S(g))G , denote Ak = Res(A).

Lemma 9.2.1. Res is an injection.
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Proof. Suppose that Ak = Bk. Then Ak−Bk = 0k. So A −B has entries in S(V ) on the k

submatrix. When restricting to h, this restricts to 0 on the k submatrix. Since WG allows

us to move roots of g to roots of k, we get that A −B restricted to h must also be 0 on

the V submatrix. Hence, since the restriction of an element of (M at (g)⊗S(g))G to h

has non-zero entries only on the Cartan submatrix and the diagonal, we get that A−B

restricted to h is 0 everywhere. But since

(M at (g)⊗S(g))G ⊗F (g) ∼= (M at (g)⊗S(h))WG ⊗FG (h)

and since the base field doesn’t change if an element is 0 or not, we get that restriction

to h is an injection. Hence A−B = 0.

Therefore Res is an injection.

Using this injection, we can prove the following useful lemma:

Lemma 9.2.2 (The Vector Restriction Lemma). For A ∈Cg(g), if Res(A) vanishes on the

torus, then A is a multiple of M.

Proof. The exact descriptions of the family algebras for the classical cases has been

handled in the previous chapters. The observation to make is that the fake degrees of

the W -representations that h⊗h decomposes into match the degrees given by the el-

ements of the family algebra that do not vanish on the torus, and hence anything that

does vanish on the torus is a multiple of M .

We handle the exceptional cases by reducing to the classical case. For g 6= G2,E6, we

suppose that we have an element A with vanishing torus part. Then the restriction of
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A to maximal subalgebra k also has vanishing torus part. For F4, we use k= B4, for E7

we use A7 and for E8 we use D8. We look at the part of the vector component of A

that correspond to roots of k. By the first part of the restriction lemma, this part is a

multiple of M restricted to this part and hence can be written as M |kP |k. P |k is W (k)-

invariant, and since both A|k and M |k are invariant under the subgroup of W (g) that

fixes k, P |k is also invariant under that subgroup of W (g) and hence can be extended to

the entire root system of g; we denote the extension by P̃ . Since the extension of M |k

by W (g) is just M , we get that A = MP̃ .

The cases of G2 and E6 have to be handled separately, since E6 has no maximal subal-

gebras that are simple, while G2 has A2 but the image of the roots of A2 under W (G2)

misses some roots of G2. So we consider the case of family algebras for semisimple Lie

algebras.

For a semisimple algebra g⊕k, the adjoint group is GxK where G and K are the adjoint

groups for g and k respectively. For a representation of g⊕k that decomposes as U ⊕V

where g acts trivially on V and k acts trivially on U , we can write the corresponding

family algebra by distributing End(U ⊕V ) and noting that G leaves fixed V , V ∨ and

S(k), and similarly for K :

(End(U ⊕V )⊗S(g⊕ k))G×K =(End(U )⊗S(g))G ⊗ I (k)⊕ (U ⊗S(g))G ⊗ (V v ⊗S(k))K

⊕ (V ⊗S(k))K ⊗ (U∨⊗S(g))G ⊕ (End(V )⊗S(k))K ⊗ I (g)

So we get that the family algebra of U ⊕V breaks into four blocks, depending on if the

coordinates are in U or V . So it remains a free module over I (g⊕ k) = I (g)⊗ I (k).
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For G2, we use the maximal subalgebra k = k1 ⊕ k2, where k1
∼= k2

∼= A1, with one A1

containing a pair of long roots and the other a pair of short roots. The family alge-

bra decomposes into four pieces, as above. For E6, we use the maximal subalgebra

k= k1⊕k2⊕k3, where k1
∼= k2

∼= k3
∼= A2, and adjoint group K1×K2×K3. We have that the

family algebra of the adjoint representation of k decomposes into nine pieces, three of

which are copies of the family algebra for A2 tensored with two extra copies of S(A2).

Note that for X ∈ ki and Y ∈ k j for i 6= j , the orbit of X under Ki spans ki and thus the

orbit of (X ,Y ) under Ki spans (ki ,Y ).

So suppose that we have an element of Ck(k) which vanishes on the torus. This ele-

ment vanishes on (h1,h2) where h1 and h2 are ki and k j respectively. If i 6= j , then

by the above all entries in (ki ⊗ k∨j ) vanish. If i = j , then we’re in a copy of the family

algebra of mki tensored with S(km)Km ⊗S(kn)Kn for i ,m,n distinct, and thus since the

vector restriction lemma holds for ki , we get that the ki vector part of the family algebra

element thus of the form Mi Pi . Because W (g) intertwines the actions of the ki , we get

that the element that the action of W (g) sends the Pi to each other, and hence Mi Pi

extends to a W (g)-invariant element on the vector part of the family algebra of g, as

was desired.
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Chapter 10

The Exceptional Lie algebras

10.1 Invariants

The exceptional Lie algebras are not uniform in many senses, so we give a table listing

the data for the reference representation and the exponents:

Table 10.1: Exponents for the Exceptional Lie algebras

g dimV Exponents

G2 7 1,5

F4 26 1,5,7,11

E6 27 1,4,5,7,8,11

E7 56 1,5,7,9,11,13,17

E8 248 1,7,11,13,17,19,23,29

Unlike for the classical Lie algebras, the reference representations of the excep-

75



tional Lie algebras carry invariants of degree higher than 2. For G2, the 7 dimensional

representation has a degree 2 symmetric invariant and a degree 3 antisymmetric in-

variant. For F4, the 26 dimensional representation has a degree 2 symmetric invariant

and a degree 3 symmetric invariant. For E6, the 27 dimensional representation has a

degree 3 symmetric invariant. For E7, the 56 dimensional representation has a degree

2 antisymmetric invariant and a degree 4 symmetric invariant. For E8 the 248 dimen-

sional representation has a degree 2 symmetric invariant and a degree 3 antisymmetric

invariant. The existence of these higher degree invariants gives us elements of (T (g))G

that are not obviously traces over the reference representation.

10.2 The Decomposition of g⊗g

The decomposition of g⊗g into irreducible representations is uniform for the five ex-

ceptional Lie algebras. There are three symmetric representations and two antisym-

metric representations. Of the three symmetric representations, one is the trivial rep-

resentation, and one has highest weight twice that of the adjoint representation, so

we label it S2 Ad j . The remaining symmetric representation we label Sym. Of the

antisymmetric representations, one is the adjoint representation; the other we label

∧2 Ad j .
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Table 10.2: Decomposition of V T

V G2 F4 Er

Tr i v φ1,0 φ1,0 φ1,0

Sym φ2,2 ⊕φ1,0 φ9,2 ⊕φ1,0 ⊕φ2,4 φ(r
2)−1,2

S2 Ad j φ1,0 ⊕2φ2,2 φ1,0 ⊕2φ9,2 ⊕φ2,4 φ1,0 ⊕φ(r
2)−1,2 ⊕φN−(r

2),4

Ad j φ2,1 φ4,1 φr,1

∧2 Ad j 2φ1,3 ⊕φ2,1 ⊕φ1,6 2φ8,3 ⊕φ4,1 ⊕φ6,6 φN−r,3 ⊕φ(r−1
2 ),e2+1

where in the Er column, N is the number of positive roots. Here the first subscript

is the dimension of the corresponding representation, the second index is the lowest

fake degree of the representation. The subscripts do not uniquely determine the rep-

resentation, but they do uniquely determine the set of associated fake degrees.

10.3 General Structure

To find a linearly-independent basis, we restrict to the Cartan subalgebra, allowing us

to decompose elements of the family algebra into torus and vector parts. The struc-

ture of the family algebras is first determined by determining the generators on the

torus, in particular by showing that (End(h)⊗S(h))W is generated by the torus parts

of Ri and Ri SR j . This in turn is done by showing that Ri for i ≤ r and Ri SR j +R j SRi

for i , j ≤ r −1 are linearly independent, and that Ri SR j −R j SRi for i , j ≤ r are linearly
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independent. There are r 2 elements of the given form, and using the isomorphism to

M ath(S(h)) gives us that there can only be r 2 linearly independent elements, so the

elements Ri , Ri SR j +R j SRi and Ri SR j −R j SRi would form a basis.

The linear independence of Ri SR j −R j SRi is proven in [So64], theorem 2, which de-

scribes the basis of the ∧2h isotypic component of S(h)/I (W ) as the order 2 minors

of the Jacobian matrix for c1, . . . ,cr . As noted in the section on restriction to subal-

gebras, this leaves the symmetric parts of End(h), which decompose as 1⊕S2h. The

fake degrees of both representations are known, calculated in [Ca], and match the de-

grees of Ri and Ri SR j . Hence we only have to check the linear independence of Ri and

Ri SR j +R j SRi .

Once the generation of the torus parts by the torus parts of Ri and S is established,

suppose that A is an element of the family algebra and for all elements B with smaller

degree, B can be generated by M ,Ri and S. The generation of the torus parts by Ri

and S shows that there is some element P (Ri ,S) such that A−P (Ri ,S) vanishes on the

torus. The vector restriction lemma then shows that A−P (Ri ,S) = MQ for some family

algebra element Q. deg(Q) < deg(A), so Q can be generated by M ,Ri and S, so A can

also be generated. Hence we get a generating set, M ,Ri and S.

In terms of relations, for Er the elements of the form M k Ri for k ≤ er − 1 match the

fake degrees of the representations of W on the vector part, so since they are a mini-

mal spanning set, they must be independent. Hence multiplying by M 2 gets a set of

objects linearly independent from the aforementioned Ri and Ri SR j . So our I (g)-basis
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of our family algebra is Ri ,Ri SR j , M k Ri for 1 ≤ k ≤ er +1.

For F4 and G2, the vector part splits in two, and so must be handled separately, but the

resulting statement of the I (g)-basis for the family algebra is the same.

10.4 Larger exceptional Lie algebras

The G2 case acts differently from the other exceptional Lie algebras, so we list it first.

Theorem 10.4.1 (Generators for the family algebra of G2). The family algebra Cg(G2)

is generated by the following:

M =
I O

R2=2

I O

S =
I O

The relations come from the Cayley-Hamilton relation on the 7-dimensional refer-

ence representation, which yield a degree 6 relation, as well as higher-degree relations

coming from higher degree traces as there are no primitive Casimir elements in degree

higher than 6. Unlike the classical cases, here the relations coming from higher-degree

traces are sometimes independent of the Cayley-Hamilton relations.

Unlike G2, the larger exceptional Lie algebras cannot be generated by the three gen-

erators listed above. Instead they appear more similar to the case of Dr , requiring a

fourth generator due to the structure of the primitive Casimir invariants.
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Theorem 10.4.2 (Generators for Cg(g) for g = F4,E6,E7,E8). For g = F4,E6,E7 or E8,

Cg(g) is generated over I (g) by

M =
I O

R ′
2=

. . .
e2 −1

I O

+
. . .

e2 −1

I O

R ′
3=

. . .
e3 −1

I O

+
. . .

e3 −1

I O

S =
I O

While for F4,E7 and E8, the two terms in R ′
2 are equal, just as in the G2 case, and

similarly for the two terms in R ′
3, for E6 the two terms are different, since the 27-

dimensional reference representation of E6 is not self-dual. Compare this to the Ar

case, for which the reference representation is not self-dual, and contrast with the

Br /Cr and Dr cases, where it is.

For each of them, the elements R ′
2 and R ′

3 do not commute, but there are commuting

elements R2 and R3 that can be written as R ′
2 plus lower order terms and R ′

3 plus lower

order terms respectively.

As with the other cases, M is central and vanishes on the torus part, S vanishes on

the vector part, and the other relations come from reductions of traces with degrees

that aren’t primitive Casimir operators. In particular, the terms of the form Rm
2 Rn

3

are expressible in terms of other elements for m(e2 −1)+n(e3 −1) not equal to ei −1
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for some i , and Rn
2 Rm

3 S +SRm
2 Rn

3 is also expressible in terms of other elements when

m(e2 −1)+n(e3 −1) = er −1.
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Chapter 11

G2

The real compact group associated to G2 is usually defined as the group of automor-

phisms of the octonions O as a division algebra over R; we define G2 to be the com-

plexification of the Lie algebra of this group. Since the real part of O is fixed, we get

an irreducible 7-dimensional representation of the automorphism group, which we

complexify to get an irreducible representation of G2. We use this as the reference rep-

resentation.

The 7-dimensional representation has two primitive invariant forms, a symmetric one

gab corresponding to the norm on the octonions, and an antisymmetric trilinear form

fabc corresponding to the imaginary component of the multiplication. Writing ea for

a basis of the imaginary part ofO, we can write our invariant forms as

eaeb =−gab + fabc g cd ed
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The torus part of G2 decomposes asφ1,0⊕φ2,2⊕φ1,6, while the vector parts decompose

asφ1,0⊕φ2,2⊕φ2,1⊕φ1,3. φ2,1 has fake degrees q+q5, φ2,2 has fake degrees q2+q6 and

φ1,k has fake degree qk . Note that there are actually several inequivalent representa-

tions denoted by φ1,6, φ2,2 and φ1,3, but they have the same fake degrees so we do not

distinguish between them.

The elements 1,S,R2 and R2S − SR2 are all linearly independent on the torus, and

hence the torus parts of these elements generate the torus parts of all elements of the

family algebra. So now we can determine the linearly independent elements on the

vector part.

By the fake degrees, there is only 1 linearly independent order 4 element when re-

stricted to the short roots, but since we can construct M 4 and R2, there must be some

nonzero element P of the family algebra of order 4 that vanishes on the short roots.

Hence M 4 restricted to the short roots can be written in terms of R2 and lower order

terms. Similarly there must be some element nonzero Q of order 6 that vanishes on

the long roots, and hence M 4 restricted to the long roots can be written in terms of R2

and lower order terms. P is not a multiple of Q.

Using the fact that R2
2 is not amongst the list of linearly independent torus elements

above, we get that the following must be linearly independent on the short roots:

1, M 2,R2

and the same set is also linearly independent on the long roots. Denote this set {Ai }i

Since the set is linearly independent on the long roots, the set {PAi }i is also linearly in-
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dependent, and vanishes on the short roots. No linear combination of the Ai vanishes

on the short roots, so the set {Ai ,PAi }i is linearly independent. Since M 2 is nonzero

on both the short and long roots, {M 2 Ai , M 2PAi }i are linearly independent, and are

themselves linearly independent from the set of linearly independent torus elements

above, since they all have vanishing torus part. Hence we have all of the linearly inde-

pendent symmetric pieces.

An I (G2) basis of the family algebra can be written as

M mRn
2 for 0 ≤ m ≤ 6,n = 0,1

S

R2S −SR2

Considering R1 as a scalar, we get

M mRn for 0 ≤ m ≤ e2,n ≤ 2

RmSRn +RnSRm for 1 ≤ m ≤ n ≤ 1

RmSRn −RnSRm for 1 ≤ m < n ≤ 2

The generalized exponents for the representations in question have already been com-

puted by Pieter Mostert [Mo12] and we can compare them to both the basis above and

the fake degrees.
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Table 11.1: Generalized Exponents in Cg(G2)

V PV (q)

Tr i v 1 = P1,0(q)

Sym q2[3]2
q = P2,2(q)+q4P1,0(q)

S2 Ad j q2[5]q2 = q2P1,0(q)+q2 +q4P2,2(q)

Ad j q[2]q4 = P2,1(q)

∧2 Ad j q[4]q2 +q6 = (1+q4)P1,3(q)+q4P2,1(q)+P1,6(q)
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Chapter 12

F4

F4 can be thought of as the Lie algebra of the isometry group of the octonionic pro-

jective plane, or as the Lie algebra of the automorphism group of traceless part of

the Albert algebra. It has a symmetric bilinear form and a symmetric trilinear form,

both from the multiplication in the Albert algebra: using e1, . . . ,e26 as the basis of

the traceless part of the Algebra algebra, for v = v aea and w = w beb we get v◦ =

gab v a w b I3 +dabc g cd v a w bed , where I3 is the 3x3-identity matrix.

Alternatively, we view F4 as B4 ⊕∆, where ∆ is the spinor representation of B4 with Lie

bracket given by [X , s] = X .s for X ∈ B4 and s ∈∆, and [s, t ] is defined by 〈X , [s, t ]〉B4 =

−〈X .t , s〉∆. In this setup, the 26-dimensional representation decomposes as C⊕V9⊕∆

where V9 is the standard 9-dimensional representation of B4; here B4 acts on each

component via the usual representation, while for s ∈ ∆, s.a = as for a ∈ C, s.v = v(s)

for v ∈ V9 where the right-hand side is the usual action of V9 on ∆, and then for t ∈∆,
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s.t is defined by 〈u, s.t〉V9 =−〈u.t , s〉∆.

To describe the trilinear form, it is easiest to view everything in terms of so(8) repre-

sentations, with∆ decomposing as∆+ and∆−. the two spinor representations of so(8),

and V9 as V8⊕C. We now get that the 26-dimensional representation can be described

as S ⊕V1 ⊕V2 ⊕V3, where V1 = V8, V2 = ∆+, V3 = ∆−, and S is the subspace of C3 such

that s1 + s2 + s3 = 0 for (s1, s2, s3) ∈ S.

The bilinear form on S is given by (s, t ) = 1
2 (s1t1 + s2t2 + s3t3), and so the bilinear form

on the 26-dimensional representation is the sum of the bilinear forms on each part.

The trilinear form becomes

(v1, v2, v3) = f (v1, v2, v3) for v1 ∈V1, v2 ∈V2, v3 ∈V3

(s,u, v) = si (u, v) for u, v ∈Vi

(r, s, t ) =−(r1s1t1 + r2s2t2 + r3s3t3) for r, s, t ∈ S

where f is the triality map from V8⊗∆+⊕∆− toC, with the scaling such that | f (x, y, z)| ≤

1 when ‖x‖ = ‖y‖ = ‖z‖ = 1 and the bound is attained for some triple.

with permutations of the arguments above giving the same values and all other triples

of arguments giving 0.

The presence of the bilinear form gives us that all odd degree Casimir operators van-

ish, while the cubic invariant gives us that the quartic and degree 10 Casimir operators

reduce. We are left with exponents of 1,5,7, and 11, giving us primitive Casimir opera-

tors of degrees 2, 6, 8 and 12.
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Because F4 is not simply laced, there are two root lengths, long and short, so the vec-

tor part of the family algebra decomposes into a long root part and a short root part.

Hence we have three parts. Following [Ca], we write the W -representations as φa,b

where a is the dimension and b is the lowest fake degree. Writing the fake degrees

as exponents of q-multiplicities Qa,b , the torus decomposes as φ1,0 ⊕φ9,2 ⊕φ6,6. The

vector parts each decompose as φ1,0 ⊕φ9,2 ⊕φ2,4 ⊕φ4,1 ⊕φ8,3. Note that the φ2,4 and

φ8,3 labels actually each denote two inequivalent representations, but although the

φ2,4 of the long roots is not equivalent to the φ2,4 of the short roots, the fake degrees

are the same, and similarly for the φ8,3 representations, so the distinction is ignored

here. Also note that except for the trivial and the adjoint representation, none of these

W (F4) representations correspond nicely to representations of F4 itself. They do pro-

vide an upper-limit for the number of linearly-independent elements we can have in

each degree, though. See Table 12.1 for the fake degrees of these representations.

R3 is of degree 6 and hence cannot be generated by M ,S and R2. Hence we need four

generators. R ′
2R ′

3−R ′
3R ′

2 has degree 10, butφ6,6 has no fake degree of 10, so R ′
2R ′

3−R ′
3R ′

2

must be reducible to lower order terms. Hence we can define an R2 and an R3 of de-

grees 3 and 4 respectively that commute and that, along with M and S, generate R ′
2

and R ′
3.

The torus parts of the set Ri for i ≤ 4, Ri SR j +R j SRi for i ≤ j ≤ 3 and Ri SR j −R j SRi

for i < j ≤ 4 form a basis of the torus parts of the algebra, as expected in the general

strategy. Now we determine the linearly independent elements on the vector part.
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Table 12.1: Fake degrees in End(F4)T

φa,b Pa,b(q)

φ1,0 1

φ9,2 q2 +q4 +2q6 +q8 +2q10 +q12 +q14

φ6,6 q6 +q8 +q12 +q16 +q18

φ2,4 q4 +q8

φ4,1 q +q5 +q7 +q11

φ8,3 q3 +q5 +q7 +2q9 +q11 +q13 +q15

By the fake degrees, there are no more than 2 linearly independent order 6 elements

when restricted to the short roots, but since we can construct M 6,R3 and M 2R2, there

must be some nonzero element P of the family algebra of order 6 that vanishes on the

short roots. Hence M 6 restricted to the short roots can be written in terms of R3, M 2R2

and lower order terms. Similarly there must be some element nonzero Q of order 6

that vanishes on the long roots, and hence M 6 restricted to the long roots can be writ-

ten in terms of R3, M 2R2 and lower order terms. P is not a multiple of Q.

Using the fact that R2
2 and R2

3 are not amongst the list of linearly independent torus

elements above, we get that the following must be linearly independent on the short

roots:

1, M 2, M 4,R2, M 2R2,R3, M 4R2, M 2R3,R2R3, M 4R3, M 2R2R3, M 4R2R3
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and the same set is also linearly independent on the long roots. Denote this set {Ai }i

Since the set is linearly independent on the long roots, the set {PAi }i is also linearly in-

dependent, and vanishes on the short roots. No linear combination of the Ai vanishes

on the short roots, so the set {Ai ,PAi }i is linearly independent. Since M 2 is nonzero

on both the short and long roots, {M 2 Ai , M 2PAi }i are linearly independent, and are

themselves linearly independent from the set of linearly independent torus elements

above, since they all have vanishing torus part. Hence we have all of the linearly inde-

pendent symmetric pieces.

The symmetric representations, Tr i v,Sym and S2 Ad j , have 0-weight multiplicities

1, 12 and 21 respectively. Unfortunately, the elements corresponding to parts of the

W (F4) representation do not at all match those corresponding to the various represen-

tations of F4 since the decomposition into torus and vector parts is not F4-invariant.

Hence the determination of which degrees give generalized exponents for which rep-

resentation is nontrivial despite knowing the decompositions of the 0-weight spaces

of the F4-representations into W (F4)-representations.

To determine the generalized exponents of the symmetric representations we exam-

ine the family algebra of the reference representation V of F4. V ⊗V decomposes as

Tr i v⊕V ⊕Sym⊕Ad j ⊕As ym, where As ym is a 273-dimensional representation. The

first three representations belong to S2V , the latter two to ∧2V .

The family algebra CV (F4), restricted to the maximal torus, splits into a 2×2 matrix cor-

responding to the 0-weight space of V and a set of 1×1 matrix algebras corresponding
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to the nonzero weights. Analogous to the case of Cg(g), we call the matrix the torus

part of the family algebra, and the 1×1 matrix algebras the vector part.

The torus part decomposes into W (F4) representations asφ1,0⊕φ2,4⊕φ1,12. The vector

part decomposes as φ1,0 ⊕φ2,4 ⊕φ9,2 ⊕φ4,1 ⊕φ8,3. The φ1,12, φ4,1 and φ8,3 are antisym-

metric, the rest are symmetric.

We write the trilinear form on V as a white dot with three reference edges attached.

Note that the trilinear form is precisely the projector from V ⊗V to V .

V is a small representation, in the sense of Broer, so its generalized exponents are 4

and 8. Thus for the following diagram we get that

. . .
k

vanishes for k odd and for k = 0 or 2, and for all other k can be written in terms of

the diagrams for k = 4 and k = 8. We denote the corresponding elements of the family

algebra as P and Q. Note that the restrictions of P and Q to the torus are linearly inde-

pendent.

We note that Md , treated as an element of CV (F4), vanishes on the torus. Hence, by the

same reasoning for generating Cg(g) elements on the vector part from W (g)-invariant

elements on the vector part, multiplying a set of linearly independent W (F4)-invariant

elements yields linearly independent elements of CV (F4) that vanish on the torus.

Since we have that P and Q restricted to the torus are linearly independent, they are

linearly independent from the elements of CV (F4) that vanish on the torus.
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Hence the generalized exponents of the symmetric parts of CV (F4) are

(1+q2)P1,0 + (1+q2)P2,4 +q2P9,2

Since we have that q0 is the generalized exponent for the trivial representation and

P2,4 gives the generalized exponents for V , we get that the generalized exponents for

Sym are q2P1,0 +q2P2,4 +q2P9,2.

Returning to the case of Cg(F4), we can now determine the generalized exponents of

S2 Ad j by elimination. We get

PTr i v (q) = q0

PSym(q) = q2P1,0 +q2P2,4 +q2P9,2

PS2 Ad j (q) = q8P1,0 +q8P2,4 + (1+q8)P9,2

We can rewrite the last two expressions as

PSym(q) = P9,2 +q8P1,0 +q8P2,4

PS2 Ad j (q) = q2P1,0 +q2P2,4 + (q2 +q8)P9,2

to better match the results for the other exceptional Lie algebras.

The antisymmetric basis elements are the ones that come from ∧2h or that vanish

on the torus. As with the symmetric elements, we get that {M Ai , MPAi }i are linearly

independent, and this in turn gives us that the M 2k+1, M 2k+1R2, M 2k+1R3 and M 2k+1R4

are linearly independent for k ≤ 5.
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Table 12.2: Generalized Exponents in Cg(F4)

V PV (q)

Tr i v 1

Sym P9,2(q)+q8P1,0(q)+q8P2,4(q)

S2 Ad j q2P1,0(q)+q2P2,4(q)+ (q2 +q8)P9,2(q)

Ad j P4,1(q)

∧2 Ad j (1+q6)P8,3(q)+q6P4,1(q)+P6,6(q)
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Chapter 13

E6

The reference representation of E6 is 27-dimensional, bearing a symmetric trilinear

form derived from the multiplication on the Albert algebra. Using e1, . . . ,e26 to denote

the 26 traceless basis elements, we write e0 for the identity element and extend dabc by

d0ab = gab for a,b 6= 0, and d00a = 0. E6 is then the group that preserves this extended

dabc without regard to preserving gab .

Alternatively, we can write E6 as a module over (A2)3. We take (A2)1, (A2)2 and (A2)3 to

be three copies of A2, with standard representations U1,U2 and U3. Then

E6 = (A2)1 ⊕ (A2)2 ⊕ (A2)3 ⊕U1 ⊗U2 ⊗U3 ⊕U∨
1 ⊗U∨

2 ⊗U∨
3

The bracket of an element of one of the (A2)i with something in either U1 ⊗U2 ⊗U3 or

U∨
1 ⊗U∨

2 ⊗U∨
3 is given by the usual action of (A2)i on Ui or U∨

i . We write

[u1 ⊗u2 ⊗u3, v∨
1 ⊗ v∨

2 ⊗ v∨
3 ] =∑

i
(ui ⊗ v∨

i − tr (ui ⊗ v∨
i ))v∨

j (u j )v∨
k (uk )
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where i , j and k cycle through 1,2,3.

The 27-dimensional representation of E6 then becomes U1 ⊗U∨
2 ⊕U2 ⊗U∨

3 ⊕U3 ⊗U∨
1 .

The action of the three copies of A2 is the usual action. Define a pair of maps φ :

U∨
i ⊗U∨

i → Ui and φ∨ : Ui ⊗Ui → U∨
i via the determinant on Ui . Then the action of

U1 ⊗U2 ⊗U3 on Ui ⊗U∨
j is given by

u1 ⊗u2 ⊗u3.vi ⊗ v∨
j = v∨

j (u j )uk ⊗φ∨(ui , vi )

And similarly for U∨
1 ⊗U∨

2 ⊗U∨
3 ,

u∨
1 ⊗u∨

2 ⊗u∨
3 .vi ⊗ v∨

j = u∨
i (vi )φ(u∨

j , v∨
j )⊗u∨

k

The trilinear form now looks like

(u1 ⊗u∨
2 , v2 ⊗ v∨

3 , w3 ⊗w∨
1 ) = u∨

2 (v2)v∨
3 (w3)w∨

1 (u1)

with all permutations of the three arguments giving the same value, and all other

triples of arguments giving 0.

The lack of a bilinear form allows for odd-degree nonvanishing Casimir operators, and

indeed the degrees of the primitive Casimir operators for E6 are 2,5,6,8,9,12, with cor-

responding exponents 1,4,5,7,8,11.

Again following [Ca], we get that the torus part decomposes as φ1,0 ⊕φ20,2 ⊕φ15,5. Un-

like F4, E6 is simply laced, so we only have one vector part, which decomposes as

φ1,0 ⊕φ20,2 ⊕φ15,4 ⊕φ6,1 ⊕φ30,3. See Table 13.1 for the fake degrees of these represen-

tations.
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Table 13.1: Fake degrees in End(E6)T

φa,b Pa,b

φ1,0 1

φ20,2 q2 +q3 +q4 +q5 +2q6 +q7 +2q8

+2q9 +2q10 +q11 +2q12 +q13 +q14 +q15 +q16

φ15,5 q5 +q6 +q8 +2q9 +q11 +3q12 +q13 +2q15 +q16 +q18 +q19

φ15,4 q4 +q6 +q7 +q8 +2q10 +q11 +q12 +q13 +2q14 +q16 +q17 +q18 +q20

φ6,1 q +q4 +q5 +q7 +q8 +q11

φ30,3 q3 +q5 +q6 +2q7 +q8 +3q9 +2q10 +3q11 +2q12

+3q13 +2q14 +3q15 +q16 +2q17 +q18 +q19 +q21

R3 is of degree 4 and hence cannot be generated by M ,S and R2. Hence we need four

generators. R ′
2R ′

3 −R ′
3R ′

2 has degree 7, but φ15,5 doesn’t have a fake degree of 7, and

hence R ′
2R ′

3−R ′
3R ′

2 must be reducible to lower order terms. Hence we can define an R2

and an R3 of degrees 3 and 4 respectively that commute and that, along with M and S,

generate R ′
2 and R ′

3.

The torus parts of the set Ri for i ≤ 6, Ri SR j +R j SRi for i ≤ j ≤ 5 and Ri SR j −R j SRi

for i < j ≤ 6 form a basis of the torus parts of the algebra, as expected in the general

strategy. Thus we get that the entire family algebra is generated by M ,S and the Ri ,

with the following elements being linearly independent:

M i R j for i ≤ 12, j ≤ 6
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Ri SR j +R j SRi for i ≤ j ≤ 5

Ri SR j −R j SRi for i < j ≤ 6

As in previous cases, multiplying an element by S on both sides yields S times an ele-

ment of I (E6), so we can define d22, d23 and d223 in I (E6) by

d22S = SR2
2S

d23S = SR2R3S

d223S = SR2
2R3S

d22 has degree 8, d23 has degree 9 and d223 has degree 12. Moreover, the set

{c1,c2,c3,d22,d23,d223}

is algebraically independent, so d22 must be a C∗-multiple of c4 plus products of lower

degree primitive Casimir operators, d23 must be a C∗-multiple of c5 plus products of

lower degree primitive Casimir operators, and d223 must be a C∗-multiple of c6 plus

products of lower degree primitive Casimir operators. Hence, since we can write R4,

R5 and R6 in terms of c4, c5 and c6, they can be generated by M ,S,R2 and R3. Hence

the entire family algebra can be generated over I (E6) by M ,S,R2 and R3, as stated in

the theorem.
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Table 13.2: Generalized Exponents in Cg(E6)

V PV (q)

Tr i v 1

Sym P20,2

S2 Ad j q2P1,0 +q2P15,4 +q2P20,2

Ad j P6,1

∧2 Ad j P30,3 +P15,5
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Chapter 14

E7

The reference representation of E7 is 56-dimensional, bearing an antisymmetric bilin-

ear form and a symmetric quartic form. We can view it as the Grassman component of

a supervector space whose even part is Euclidean R4, with the metric on R4 becoming

the bilinear form and the determinant on R4 becoming the quartic form.

Alternatively, we can write E7 as a module over A7. We take V to be the standard 8-

dimensional representation of A7, and we take an identification of ∧8V with C, along

with the induced identification of ∧8V ∨ with C. This gives us identifications of ∧kV

with ∧8−kV ∨.

E7 decomposes as E7 = A7 ⊕∧4V , with V being the standard 8-dimensional represen-

tation of A7. For X ∈ A7 and v ∈ ∧4V , we define [X , v] = X .v , and for u, v ∈ ∧4V , we

define [u, v] by 〈X , [u, v]〉A7 =−(X .u)∧ v

We can view the 56-dimensional representation as ∧2V ⊕∧2V ∨. The action of A7
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is the usual action on ∧2V and ∧2V ∨, while the action of u ∈ ∧4V on t ∈ ∧2V is

u.t = u ∧ t ∈∧6V ∼=∧2V ∨ and the action of u on ∧2V ∨ is u.t = u ∧ t ∈∧6V ∨ ∼=∧2V .

Let a,b,c,d ∈∧2V and a∨,b∨c∨,d∨ ∈∧2V ∨. Then we have that the bilinear form looks

like

(a,b) = (a∨,b∨) = 0, (a,b∨) =−(b∨, a) = b∨(a)

and the quadratic form looks like

(a,b,c,d) = a ∧b ∧ c ∧d ∈∧8V ∼=C

(a,b,c,d∨) = 0

(a,b,c∨,d∨) = 1

2
c∨(a)d∨(b)+ 1

2
d∨(a)c∨(b)− (c∨∧d∨)(a ∧b)

(a,b∨,c∨,d∨) = 0

(a∨,b∨,c∨,d∨) = a∨∧b∨∧ c∨∧d∨ ∈∧8V ∨ ∼=C

with permutations of the arguments treated via the full symmetry of the quadratic

form.

The existence of the bilinear form forces all odd-degree Casimir elements to vanish,

and we are left with the degrees of the primitive Casimir elements being 2,6,8,10,12,14

and 18, with corresponding exponents 1,5,7,9,11,13, and 17.

The torus part of the family algebra decomposes as φ1,0 ⊕φ27,2 ⊕φ21,6, and the vector

part as φ1,0 ⊕φ27,2 ⊕φ35,4 ⊕φ7,1 ⊕φ56,3. See Table 14.1 for the fake degrees of these

representations.

R3 is of degree 6 and hence cannot be generated by M ,S and R2. Hence we need four
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Table 14.1: Fake degrees in End(E7)T

φa,b Pa,b

φ1,0 1

φ27,2 q2 +q4 +2q6 +2q8 +3q10 +3q12 +3q14

+3q16 +3q18 +2q20 +2q22 +q24 +q26

φ21,6 q6 +q8 +q10 +2q12 +2q14 +2q16

+3q18 +2q20 +2q22 +2q24 +q26 +q28 +q30

φ35,4 q4 +q6 +2q8 +2q10 +3q12 +3q14 +4q16 +3q18

+4q20 +3q22 +3q24 +2q26 +2q28 +q30 +q32

φ7,1 q +q5 +q7 +q9 +q11 +q13 +q17

φ56,3 q3 +q5 +2q7 +3q9 +4q11 +5q13 +6q15 +6q17

+6q19 +6q21 +5q23 +4q25 +3q27 +2q29 +q31 +q33

generators. R ′
2R ′

3 −R ′
3R ′

2 has degree 10; while φ21,6 has a fake degree of 10, it only has

one of them, so R ′
2R ′

3 −R ′
3R ′

2 must be reducible to R4S − SR4 and lower order terms.

Hence (once we prove that the torus part of R4 can be generated by R ′
2,R ′

3 and S) we

can define an R2 and an R3 of degrees 4 and 6 respectively that commute and that,

along with M and S, generate R ′
2 and R ′

3.

The torus parts of the set Ri for i ≤ 7, Ri SR j +R j SRi for i ≤ j ≤ 6 and Ri SR j −R j SRi

for i < j ≤ 7 form a basis of the torus parts of the algebra, as expected in the general

strategy. Thus we get that the entire family algebra is generated by M ,S and the Ri ,
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with the following elements being linearly independent:

M i R j for i ≤ 18, j ≤ 7

Ri SR j +R j SRi for i ≤ j ≤ 6

Ri SR j −R j SRi for i < j ≤ 7

As in previous cases, multiplying an element by S on both sides yields S times an ele-

ment of I (E7), so we can define d22, d23, d33 and d233 in I (E7) by

d22S = SR2
2S

d23S = SR2R3S

d33S = SR2
3S

d233S = SR2R2
3S

d22 has degree 10, d23 has degree 12, d33 has degree 14 and d223 has degree 18. More-

over, the set

{c1,c2,c3,d22,d23,d33,d233}

is algebraically independent, so d22 must be a C∗-multiple of c4 plus products of lower

degree primitive Casimir operators, d23 must be a C∗-multiple of c5 plus products of

lower degree primitive Casimir operators, d33 must be a C∗-multiple of c6 plus prod-

ucts of lower degree primitive Casimir operators, and d233 must be a C∗-multiple of c7

plus products of lower degree primitive Casimir operators. Hence, since we can write

R4, R5, R6 and R7 in terms of c4, c5, c6 and c7, they can be generated by M ,S,R2 and
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R3. Hence the entire family algebra can be generated over I (E7) by M ,S,R2 and R3, as

stated in the theorem.

Note that R3
2 also has degree 12, but the φ27,2 representation only allows 3 degree 12

elements. Since R2
3 ,R2R3S +SR2R3 and R2SR3+R3SR2 are all linearly-independent on

the torus, R3
2 must be expressible as a C-linear combination of R2

3 ,R2R3S +SR2R3 and

R2SR3 +R3SR2 plus lower order terms.

Table 14.2: Generalized Exponents in Cg(E7)

V PV (q)

Tr i v 1

Sym P27,2

S2 Ad j q2P1,0 +q2P35,4 +q2P27,2

Ad j P7,1

∧2 Ad j P56,3 +P21,6
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Chapter 15

E8

The reference representation of E8 is the adjoint representation, bearing a symmet-

ric bilinear form (the Killing form) and an antisymmetric trilinear form (the structure

constants). Because the reference representation is the adjoint representation, there

is no nice description of the invariant forms other than as themselves.

Alternatively, we can write E8 as a module over D8. E8 decomposes as E8 = D8 ⊕ S,

where S is one of the two spinor representations of D8; it doesn’t matter which one.

The Lie bracket is extended by [X , s] = X .s for X ∈ D8 and s ∈ S, and for s, t ∈ S, [s, t ] is

defined by 〈X , [s, t ]〉D4 = −〈X .t , s〉S . The Lie bracket also provides the action of E8 on

itself.

The existence of the bilinear form forces all odd-degree Casimir elements to vanish,

and we are left with the degrees of the primitive Casimir elements being 2,8,12,14,

18,20,24, and 30, with corresponding exponents 1,7,11,13,17, 19,23, and 29.
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The torus part of the family algebra decomposes as φ1,0⊕φ35,2⊕φ28,8. The vector part

decomposes as φ1,0 ⊕φ35,2 ⊕φ84,4 ⊕φ8,1 ⊕φ112,3. See Table 15.1 for the fake degrees of

these representations.

R3 is of degree 10 and hence cannot be generated by M ,S and R2. Hence we need

Table 15.1: Fake degrees in End(E8)T

φa,b Pa,b

φ1,0 1

φ35,2 q2 +q6 +q8 +q10 +2q12 +2q14 +q16 +3q18 +2q20 +2q22 +3q24

+2q26 +2q28 +3q30 +q32 +2q34 +2q36 +q38 +q40 +q42 +q46

φ28,8 q8 +q12 +q14 +2q18 +2q20 +3q24 +q26 +q28 +4q30

+q32 +q34 +3q36 +2q40 +2q42 +q46 +q48 +q52

φ84,4 q4 +q6 +q8 +2q10 +2q12 +2q14 +4q16 +3q18 +4q20 +5q22 +4q24

+5q26 +6q28 +4q30 +6q32 +5q34 +4q36 +5q38 +4q40 +3q42

+4q44 +2q46 +2q48 +2q50 +q52 +q54 +q56

φ8,1 q +q7 +q11 +q13 +q17 +q19 +q23 +q29

φ112,3 q3 +q5 +q7 +2q9 +2q11 +3q13 +4q15 +4q17 +5q19 +6q21 +6q23

+7q25 +7q27 +7q29 +7q31 +7q33 +7q35 +6q37 +6q39 +5q41

+4q43 +4q45 +3q47 +2q49 +2q51 +q53 +q55 +q57

four generators. R ′
2R ′

3 − R ′
3R ′

2 has degree 16, but φ28,8 has no fake degree of 16, so

R ′
2R ′

3 −R ′
3R ′

2 must be reducible to lower order terms. Hence we can define an R2 and
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an R3 of degrees 6 and 10 respectively that commute and that, along with M and S,

generate R ′
2 and R ′

3.

The torus parts of the set Ri for i ≤ 8, Ri SR j +R j SRi for i ≤ j ≤ 7 and Ri SR j −R j SRi

for i < j ≤ 8 form a basis of the torus parts of the algebra, as expected in the general

strategy. Thus we get that the entire family algebra is generated by M ,S and the Ri ,

with the following elements being linearly independent:

M i R j for i ≤ 18, j ≤ 7

Ri SR j +R j SRi for i ≤ j ≤ 6

Ri SR j −R j SRi for i < j ≤ 7

As in previous cases, multiplying an element by S on both sides yields S times an ele-

ment of I (E8), so we can define d22, d23, d222, d223 and d2223 in I (E8) by

d22S = SR2
2S

d23S = SR2R3S

d222S = SR3
2S

d223S = SR2
2R3S

d2223S = SR3
2R3S

d22 has degree 14, d23 has degree 18, d222 has degree 20, d223 has degree 24, and d2223

has degree 30. Moreover, the set c1,c2,c3,d22,d23,d222, d223 and d2223 is algebraically
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independent, so d22 must be a C∗-multiple of c4 plus products of lower degree primi-

tive Casimir operators, d23 must be a C∗-multiple of c5 plus products of lower degree

primitive Casimir operators, d222 must be a C∗-multiple of c6 plus products of lower

degree primitive Casimir operators, d223 must be a C∗-multiple of c7 plus products of

lower degree primitive Casimir operators, and d2223 must be a C∗-multiple of c8 plus

products of lower degree primitive Casimir operators. Hence, since we can write R4,

R5, R6, R7 and R8 in terms of c4, c5, c6, c7 and c8, they can be generated by M ,S,R2 and

R3. Hence the entire family algebra can be generated over I (E8) by M ,S,R2 and R3, as

stated in the theorem.

Table 15.2: Generalized Exponents in Cg(E8)

V PV (q)

Tr i v 1

Sym P35,2

S2 Ad j q2P1,0 +q2P84,4 +q2P35,2

Ad j P8,1

∧2 Ad j P112,3 +P28,8
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