Departmental Papers (CIS)

Document Type

Conference Paper

Date of this Version

April 2003

Comments

Postprint version. Published in Lecture Notes in Computer Science, Volume 2619, Tools and Algorithms for the Construction and Analysis of Systems, 2003, pages 363-378.
Publisher URL: http://springerlink.metapress.com/link.asp?id=unhytq9djp9j5mjn

Abstract

In this paper, we focus on solving games in recursive game graphs that can model the control ow in sequential programs with recursive procedure calls. While such games can be viewed as the pushdown games studied in the literature, the natural notion of winning in our framework requires the strategies to be modular with only local memory; that is, resolution of choices within a module does not depend on the context in which the module is invoked, but only on the history within the current invocation of the module. While reachability in (global) pushdown games is known to be EXPTIME-complete, we show reachability in modular games to be NP-complete. We present a fixpoint computation algorithm for solving modular games such that the worst-case number of iterations is exponential in the total number of returned values from the modules. If the strategy within a module does not depend on the global history, but can remember the history of the past invocations of this module, that is, if memory is local but persistent, we show that reachability becomes undecidable.

Share

COinS
 

Date Posted: 29 November 2005