
Modular Strategies for Recursive Game

Graphs? ??

Rajeev Alur1, Salvatore La Torre2, and P. Madhusudan1

1 University of Pennsylvania
2 Universit�a degli Studi di Salerno

Abstract. In this paper, we focus on solving games in recursive game
graphs that can model the control
ow in sequential programs with recur-
sive procedure calls. While such games can be viewed as the pushdown
games studied in the literature, the natural notion of winning in our
framework requires the strategies to be modular with only local mem-
ory; that is, resolution of choices within a module does not depend on the
context in which the module is invoked, but only on the history within
the current invocation of the module. While reachability in (global) push-
down games is known to be EXPTIME-complete, we show reachability in
modular games to be NP-complete. We present a �xpoint computation
algorithm for solving modular games such that the worst-case number
of iterations is exponential in the total number of returned values from
the modules. If the strategy within a module does not depend on the
global history, but can remember the history of the past invocations of
this module, that is, if memory is local but persistent, we show that
reachability becomes undecidable.

1 Introduction

The original motivation for studying games in the context of formal analysis
of systems comes from the controller synthesis problem. Given a description of
the system where some of the choices depend upon the input and some of the
choices represent uncontrollable internal non-determinism, designing a controller
that supplies inputs to the system so that the product of the controller and the
system satis�es the correctness speci�cation corresponds to computing winning
strategies in two-player games. This question has been studied extensively in
the literature (see [5, 15, 10] for sample research and [19] for a survey). Besides
the long-term dream of synthesizing correct programs from formal speci�cations,
games are relevant in two di�erent contemporary contexts. First, model checking
for branching-time logics such as �-calculus, as well as several procedures that

? This research was supported in part by ARO URI award DAAD19-01-1-0473, NSF
CAREER award CCR97-34115, and NSF award ITR/SY 0121431. The second au-
thor was also supported by the MIUR in the framework of the project "Metodi
Formali per la Sicurezza" (MEFISTO) and MIUR grant 60% 2002.

?? For the details of the proofs of this paper we refer the reader to the technical report
available at the URL:\http://www.cis.upenn.edu/�madhusud/".

use tree automata emptiness for deciding various logics, can be reduced to solving
games [9, 18]. Second, games have been shown to be relevant for veri�cation of
open systems. For instance, the Alternating Temporal Logic allows speci�cation
of requirements such as \module A can ensure delivery of the message no matter
how module B behaves" [2]; module checking deals with the problem of checking
whether a module behaves correctly no matter in which environment it is placed
[11]; and the framework of interface automata allows assumptions about the
usage of a component to be built into the speci�cation of the interface of the
component, and formulates compatibility of interfaces using games [8].

In traditional model checking, the model is a �nite state machine whose
vertices correspond to states, and whose edges correspond to transitions. To
de�ne two-player games in this model, the vertices are partitioned into two sets
corresponding to the two players, where a player gets to choose the transition
when the current state belongs to its own partition 1. In this paper, we consider
the richer system model of recursive state machines (RSMs), in which vertices
can either be ordinary states or can correspond to invocations of other state
machines in a potentially recursive manner. Recursive state machines can model
the control
ow in typical sequential imperative programming languages with
recursive procedure calls.

More precisely, a recursive state machine consists of a set of component
machines called modules. Each module has a set of nodes (atomic states) and
boxes (each of which is mapped to a module), a well-de�ned interface consisting
of entry and exit nodes, and edges connecting nodes/boxes. An edge entering a
box models the invocation of the module associated with the box, and an edge
leaving a box corresponds to a return from that module. To de�ne two-player
games on recursive state machines, we partition the nodes into two sets such
that a player gets to choose the transition when the current node belongs to its
own partition. We focus on solving the reachability game, that is, deciding if one
of the players has a strategy to force the system starting from a speci�ed node
to enter one of the target nodes.

Due to recursion, the underlying global state-space is in�nite and behaves like
a pushdown system. While reachability in pushdown games is already studied
[20, 6], we are interested in developing algorithms for games on RSMs for two
reasons. First, RSMs is a more natural model of recursive systems, and studying
reachability (without games) on RSMs has led to re�ned bounds on complexity
in terms of parameters such as the number of entry and exit nodes of modules
[1]. Second, existing algorithms for solving pushdown games assume that each
player has access to the entire global history which includes the information
of the play in all modules. The �rst contribution of the paper is the notion of
modular strategies for games on RSMs. A modular strategy is a strategy that
has only local memory, and thus, resolution of choices within a module does not
depend on the context in which the module is invoked, but only on the history

1 More interesting forms of interactions between the two players are possible, for in-
stance, see alternating transition systems [2], but we will use a simple game model
for this paper.

2

within the current invocation of the module. This permits a natural de�nition of
synthesis of recursive controllers: a controller for a module can be plugged into
any context where the module is invoked. Clearly, there are cases where there
is no modular strategy, but there is a global one. Recent work on the interface
compatibility checking for software modules implements the global games on
pushdown systems [7], but we believe that checking for existence of modular
strategies matches better with the intuition for compatibility.

After formulating the notion of modular strategies, we show that deciding ex-
istence of modular winning strategies for reachability games is NP-complete. In
contrast, global reachability games are EXPTIME-complete [20]. Then, we pro-
ceed to formulate a �xpoint computation algorithm that generalizes the symbolic
solution to reachability games. For ordinary game graphs, the �xpoint algorithm,
starting with the target vertices, iteratively grows the set of vertices from which
winning is ensured. In our case, when a node is found to be winning, the algo-
rithm also needs to keep track of the strategies within di�erent modules that were
used. This labeling is needed to make sure that the same set of module strate-
gies is used consistently everywhere to ensure modularity. It turns out that the
only relevant information about a strategy used within a module is the set of
exit nodes of the module that the strategy can restrict the game into. Conse-
quently, in the worst-case, the number of iterations of our �xpoint computation
is exponential in the number of exit nodes of the modules.

We also consider safety winning conditions for recursive game graphs. Since
we restrict to modular strategies of the protagonist, on recursive game graphs
safety is not dual to reachability. We prove that determining the existence of a
modular strategy for a safety recursive game is also NP-complete.

Finally, we consider the case when the strategy within a module is required
to have only local memory, and does not depend on the global history, but this
memory can be persistent, and can remember the history of the past invocations
of this module. In this case, we prove the reachability games to be undecidable
by a reduction from the undecidability of multi-player games with incomplete
information [14].

Related work: We have already explained the relation to the global games
on pushdown systems [4, 6, 20]. The notion of modular strategies may remind
the reader of games with partial information, but this is technically quite dif-
ferent from the standard notion of partial information, and, in fact, lowers the
complexity class of the decision problem, while introducing partial information
typically adds an exponential to the complexity. Another context where modular
strategies have been studied is in the realm of concurrent or distributed games
where the intention is to come up with distributed controllers for a system (see
[16, 12, 17] and references therein). In that setting, however, looking for modular
strategies quickly leads to undecidability. There are some restricted architectures
that are decidable, a prominent one being the hierarchic architectures [14, 16].
Our problem, however, is quite di�erent from these works since in our setting
the control is always in one module, while in the concurrent setting, control can
be in several modules at any given time.

3

2 Games on Recursive Graphs

In this section we introduce recursive games and the decision problem we wish to
solve. We start recalling the notion of
at games which are the standard games
on And-Or graphs.

2.1 Flat game graphs

A
at game graph is a tuple G = hV; V0; V1;
i where V is a �nite set of vertices,
V0 and V1 de�ne a partition of V , and
 : V ! 2V is a function giving for each
vertex u 2 V the set of its successors in G. The game is played by two players,
player 0 (the protagonist) and player 1 (the adversary). For p = 0; 1, the vertices
in Vp are those from which only player p can move and the allowed moves are
given by the function
. A play of a game graph G is a (�nite or in�nite) path in
G constructed in turns by the two players. A play u0u1 : : : starting at a vertex
u0 is constructed as follows: if u0 2 Vp, player p chooses a successor vertex u1;
at each step j, player p (where uj 2 Vp) chooses a successor vertex uj+1.

A strategy for player p is a function f : V � ! V mapping sequences (and
hence plays) to vertices. The idea is that when a play �u has been played, where
u 2 Vp, the strategy f recommends the move f(�u). A play � = u1u2 : : : is
according to f if for every j < j�j such that uj 2 Vp, f(u0 : : : uj) = uj+1.
When a strategy for player p depends only on the current vertex of a play, i.e., if
f(�x) = f(�0x), for all plays �; �0 and x 2 Vp, it is called a memoryless strategy .
A play � according to a strategy is said to be maximal if it cannot be continued
(i.e. if � is in�nite or there is no v 2 V such that �v is a play according to the
strategy).

Since we are interested in reachability games in this paper, we have a winning
condition for the game given by a subset of target vertices X . A
at reachability
game is then a tuple hG; v0; Xi where G is a
at game graph, v0 is the initial
vertex where the plays start, and X , a subset of the vertices, is the target set.
A play is winning for the protagonist if it contains a vertex in X (i.e. a play
� = u0u1 : : :, where u0 = v0, is winning if there is an i < j�j such that ui 2 X).
A strategy for the protagonist is winning if all maximal plays according to it
are winning, while a strategy for the adversary is winning if all maximal plays
according to it are not winning. Hence, a winning strategy for the protagonist
is one which forces the play to the target set X , no matter how the adversary
chooses. Flat reachability games are PTIME-complete and if a player has a win-
ning strategy, it also has a memoryless winning strategy [13].

2.2 Recursive game graphs

In this paper, our main objective is to study reachability games in hierarchical
and recursive graph structures that are de�ned using several interacting com-
ponent game graphs (or game modules). Our model is a generalization to game
graphs of the recursive state machines model de�ned in [1].

4

A1

A2

A2 A2

e1

(b1; e2)

(b1; x1)

(b1; x2)

(b2; e2)

(b2; x1)

(b2; x2)
(b3; e2)

(b3; x1)

(b3; x2)

x0

1

x0

2

x0

3

A2

e2

x1

x2

Fig. 1. A recursive game graph

A recursive game graph A is given by a tuple hA1; : : : ; Ani, where each game
module Ai = (Ni; Bi; V

0
i ; V

1
i ; Yi;Eni;Ex i; Æi) consists of the following compo-

nents:

{ A set of nodes Ni which we call the nodes of module Ai.
{ A nonempty set of entry nodes Eni � Ni and a nonempty set of exit nodes

Ex i � Ni.
{ A set of boxes Bi.
{ Two disjoint sets V 0

i and V 1
i that partition the set of nodes and boxes into

two sets, i.e. V 0
i [V 1

i = Ni [Bi and V 0
i \ V 1

i = ;. The set V 0
i (V 1

i) denotes
the places where it is the turn of player 0 (resp. player 1) to play.

{ A labeling Yi : Bi ! f1; : : : ; ng that assigns to every box an index of the
game modules A1; : : : ; An.

{ Let Calls i = f(b; e) j b 2 Bi; e 2 Enj ; j = Yi(b)g denote the set of calls of
module Ai and let Retnsi = f(b; x) j b 2 Bi; x 2 Ex j ; j = Yi(b)g denote
the set of returns in Ai. Then, Æi : Ni [Retnsi ! 2Ni[Callsi is a transition
function.

We also refer to entry (exit) nodes simply as entry (exit). Nodes of Ni, for
any i, which are in V

p
i are called p-nodes while returns of the form (b; u), where

b 2 V
p
i , for some i, are called p-returns. An element in Calls i of the form (b; e)

represents a call from Ai to the module Aj , where j = Yi(b) and e is an entry of
Aj . An element in Retnsi of the form (b; x) corresponds to the associated return
of control from Aj to Ai when the call exits from Aj at exit x. The transition
function hence de�nes moves from nodes and returns to a set of nodes and calls.

To illustrate the de�nitions, consider the example shown in Figure 1. It com-
prises two modules A1 and A2, where A1 has three boxes that invoke A2. The
only adversary node is e1, the initial node of A1.

We make some assumptions of these graphs in the sequel that enable a more
readable presentation (these will turn out to be without loss of generality for the
problems we consider):

5

{ There is only one entry point to every module, i.e. jEij = 1 for every i. We
refer to this unique entry point of Ai as ei.

{ For every u 2 Ni, ei 62 Æi(u) holds, and for every x 2 Ex i, Æi(x) is empty.
That is, there are no transitions from a module to its own entry nodes and
no transitions from its exits.

{ The nodes and boxes of all agents are disjoint. Let B =
S
i Bi denote the

set of all boxes and N =
S
iNi denote the set of all nodes. We extend the

functions fYig
n
i=1 to a single function Y : B ! f1; : : : ; ng.

Note that the above de�nition allows recursive calls|a module can call itself
directly or indirectly. We say that a recursive game graph is hierarchic if this
cannot happen. Formally, a recursive game graph hA1; : : : Ani is hierarchic if
there is an ordering � on the modules such that for every Ai, Ai has no calls to
any Aj where Aj � Ai (i.e. there is no box b in Ai such that AY (b) � Ai). For
example, the game graph in Figure 1 is hierarchic.

To de�ne the notions of play and strategy for a recursive game graph, we
�rst give the semantics of our model by de�ning a
at game graph associated
with it. This is similar to the way one associates a
at model that describes the
behavior of a recursive state machine. A (global) state of a recursive game graph
A = hA1; : : : ; Ani is a tuple h�b; ui where �b = b1; : : : ; br is a �nite (perhaps empty)
sequence of boxes from B, and u is a node in N . Consider a state hb1; : : : ; br; ui
such that bi 2 Bji for 1 � i � r and u 2 Nj . Such a state is well-formed if
Y (bi) = ji+1 for 1 � i < r, and if r � 1, Y (br) = j. If � denotes the empty
sequence, note that any state of the form h�; ui is well-formed; we henceforth
use hui to denote h�; ui. Intuitively, a well-formed state hb1; b2; ui denotes the
con�guration where b1 is a call to a module which in turn called another module
using b2 in which the current node is u. When the last module exits, the control
goes back to the corresponding return of b2, and so on. Henceforth, we assume
states to be well-formed and denote by QA the set of global states of A.

According to the partition of nodes and boxes in the recursive game graph,
the states are also classi�ed as protagonist and adversary states. For p = 0; 1,
a state hb1; : : : ; br; ui is a p-state if either u is not an exit and is a p-node, or,
(br; u) is a p-return. (If r = 0 and u is an exit, the de�nition will not matter
since there are no transitions from it; we hence choose these states to be, say,
0-states.) We denote by Qp the set of p-states.

The global game graph corresponding to a recursive game graph A is GA =
(QA; Q0; Q1; Æ) where the global transition function Æ is given as follows. Let
s = hb1; : : : ; br; ui be a state with u 2 Nj and br 2 Bm. Then, s

0 2 Æ(s) provided
one of the following holds:

1. u0 2 Æj(u) for a node u0 of Aj , and s0 = hb1; : : : ; br; u0i.
2. (b0; e) 2 Æj(u) for a box b0 of Aj , and s0 = hb1; : : : ; br; b0; ei.
3. u is an exit node of Aj , u

0 2 Æm(br; u) for a node u0 of Am, and s0 =
hb1; : : : ; br�1; u0i.

4. u is an exit node of Aj , (b
0; e) 2 Æm(br; u) for a box b0 of Am, and s0 =

hb1; : : : ; br�1; b0; ei.

6

The �rst case above is when the control stays within the module Aj , the
second case is when a new module is entered via a box of Aj , the third is when
the control exits Aj and returns to Am, and the last case is when the control
exits Aj and immediately enters a new module via a box of Am. Note that the
set of reachable states from, say, a state heii (ei 2 Eni) could be in�nite if the
recursive game graph is not hierarchic (if it is hierarchic, the global reachable
graph is �nite).

A recursive game is a tuple hA; e1; XiwhereA = hA1; : : : Ani is a game graph,
e1 is the entry node of A1, and X � Ex 1 is the target set, which is a subset of
the exits of A1. The global recursive game corresponding to hA; e1; Xi is the
at
game hGA; he1i; X

0i where X 0 is the set of all global states s = hb1; : : : ; br; ui
where u 2 X . A (winning) global strategy in a recursive game is a (winning)
strategy in the global recursive game.

If we use the notion of global strategies, it will lead us to the de�nition of
games equivalent to pushdown games [20]. One can show that for every recur-
sive game, there is a polynomial-sized pushdown automaton whose con�guration
game graph (as in [20]) is isomorphic to the global graph of the recursive game,
and vice-versa. We depart from pushdown games at this point in that we re-
quire a particular kind of strategy (namely a modular strategy) that wins these
games. In the next section, we introduce this class of strategies and de�ne the
corresponding decision problem.

2.3 Modular strategies

We are interested in modular strategies for the protagonist in each game module
such that when the strategies are put together, the protagonist wins the game.
Such strategies are restricted in that they can only refer to the \local history"
of each module, that is, the portion of the play corresponding to the \current"
invocation of the module.

To de�ne formally a modular strategy for a recursive game graph A, we
introduce some notation. For a play �, the control after � is in Ai if the current
node is in Ai; however, if the current node is an exit node, then the control is
in the module that made the last call. Formally, for a play �s, we say that the
control after �s is in Ai if s = hb1; : : : ; br; ui, with u 2 NinEx i or (br; u) 2 Retnsi.
Note that the control after a play can be in at most one module.

Consider a play � = s0s1 : : : sk and let the control after � be in Ai. Let sk =
hb1; : : : ; br; ui. Then we de�ne the current stack of � to be �(�) = hb1; : : : ; bri,
if u 62 Ex and �(�) = hb1; : : : ; br�1i, otherwise. Now, let j be the largest index
0 � j � k such that sj = h�(�); eii. Intuitively, sj corresponds to the activation
of Ai that led to sk. The states sj0 , where j � j0 � k are all of the form
h�(�); b01; : : : ; b

0

r0 ; u0i, for some r0 � 0. Note that there may be states sj0 , j <

j0 � k such that sj0 = h�(�); b01; : : : ; b
0

r0 ; eii, with r0 � 1, which denote recursive
entries into Ai, but which have returned before sk. We will now be interested in
�(�) = sj : : : sk, the suÆx of � from sj .

What we want to do now is to project �(�) to the nodes, calls and returns
in Ai, discarding fragments of runs in modules called from Ai. To do this, let

7

us de�ne a projection function �i� , for a sequence � = hb1; : : : ; bri, of any state

s as follows: if s = h�; ui, where u 2 Ni, then �i�(s) = u; if s = h�; b; ui, where

(b; u) 2 Calls i [Retnsi, then �i�(s) = (b; u); in all other cases, �i�(s) = ", the

empty word.We extend �i� to sequences of states: �
i
�(s

0

1 : : : s
0

l) = �i�(s
0

1) : : : �
i
�(s

0

l).
We can now de�ne a function �i that extracts the local memory from the

play �: �i(�) = �i�(�)(�(�)). Thus the local memory of a play � ending in a
state sk stands for the fragment of the play in the current module that gives the
sequence of nodes, calls and returns in Ai that led to the state sk, ignoring the
sub-plays in called modules (including recursive calls to itself).

A modular strategy f for player 0 is a strategy for player 0 such that for all
plays �; �0 of A, if the control after � and �0 are both in Ai and �i(�) = �i(�

0)
then f(�) = f(�0) holds. In other words, the advice of the strategy f for any
play � which is currently in Ai depends only on the local memory �i(�).

Since a modular strategy depends only on the local memories, we can alterna-
tively view the modular strategy as a set of strategies, one for each game module.
A strategy for a game module Ai is a function fi : (Ni [Calls i [Retnsi)

� !

(Ni [Calls i). A local strategy bf is ffigni=0 where fi is a strategy for Ai. A play

� is according to bf if for every pre�x �0ss0 of �, if the control after �0s is in Ai

and s is in Q0, then the following holds: let �i(�
0s) = w, then �i(�ss

0) = wu

where u = fi(w).
For a modular strategy f , we can associate with it a local strategy. Let �

be a play consistent with f . Set � = �(�) and let the control after � be in
Ai. Then, fi(�i(�)) = �i�(f(�)) (the function fi on other values can be de�ned
arbitrarily). Then it is easy to see that the plays according to f are precisely
the plays according to the local strategies. Conversely, given a local strategybf = ff1; : : : ; fng, we can associate a modular strategy f with it. Let �s be a

play consistent with bf , let the control after �s be in Ai, and let �(�s) = �. Then
f(�s) = s0 where s0 is the unique successor of s such that �i�(s

0) = fi(�i(�s)).
Again, it is easy to see that f is modular and that the sets of plays according to
f and bf are the same. In the sequel, we freely switch between modular strategies
and the corresponding local strategies.
We consider the following decision problem.

Given a recursive game hA; e1; Xi, is there a modular winning strategy (or
equivalently, a local strategy that is winning) for the protagonist?

Consider the game graph in Figure 1. Note that the only place where the
protagonist has a choice is in picking the move from e2. If the target set is
fx02; x

0

3g then the protagonist has a winning modular strategy where it chooses
to move to the exit node x2 in A2. For the target set fx

0

1; x
0

3g, there is no modular
strategy for the protagonist that is winning. However, it is easy to see that there
is a global winning strategy.

The idea behind modular strategies is that it is more appropriate to look
for strategies for the modules rather than a monolithic strategy. However, rather
than allowing a strategy for a module Ai to remember only the play from the last
call to Ai, we could allow the strategy to remember all parts of the play when

8

it was inside Ai. That is, we could allow strategies to have a persistent memory
where it is allowed to remember how the play evolved in all the previous calls
to the module. For example, in the recursive game in Figure 1, though there is
no modular strategy for the protagonist for the target set fx01; x

0

3g, there is a
persistent strategy (the strategy for A2 picks x1 when it is �rst called and picks
x2 on the second call). Checking for persistent strategies, however, turns out to
be undecidable (see Section 5 for details).

From now on, when the context is clear, we use the term strategy to mean
modular strategies.

3 Solving recursive games

Let us �x a reachability game hA; e1; Xi for the rest of this section, where A =
hA1; : : : ; Aki, and each Ai = (Ni; Bi; V

0
i ; V

1
i ; Yi;Eni;Ex i; Æi).

Consider f , a modular strategy for hA; e1; Xi. The key to deciding recursive
games is the observation that whether f is winning or not is primarily determined
by �nding, for each Ai, the set of exit nodes of Ai which the local strategy fi
will lead a play entering Ai to. Let X

f
i denote the set of exits a play can reach if

it enters Ai and continues according to f ; that is, an exit point x 2 Ex i is in X
f
i

if there is a play according to f of the form �h�b; eii�
0h�b; xi. Since the strategy

f is modular, such exits x are the ones for which there is a play according to f
of the form heii�00hxi. In fact, if we take a winning strategy bf and replace an

fi in bf with a di�erent strategy f 0i which calls the same modules that fi calls
and leads to the same set of exit nodes of Ai, then this will also be a winning
strategy. This motivates the following de�nitions.

For a modular strategy f for hA; e1; Xi, the call graph of f is Cf = (V;!; �)
such that (V;!) is a graph where:

{ V � fA1; : : : ; Ang is the set of all Ai such that there is a play according to
f that enters Ai.

{ Ai ! Aj i� there is some play according to f from he1i where there is a
call from Ai to Aj (i.e. there is a play of the form he1i�hb1; : : : ; br; ei with
br 2 Bi and Y (br) = Aj).

{ For every Ai 2 V , let �(Ai) = X
f
i .

We �rst make a simple observation:

Lemma 1. Let f be a winning strategy for hA; e1; Xi and let Cf = (V;!; �) be
the call graph of f . Then, (V;!) is acyclic.

Proof. If f is a strategy whose call graph has a cycle, then one can show that
there is a play according to f that makes calls to the modules recursively ac-
cording to the cycle in the call graph, and hence never reaches the target set.
Such an f will not be winning. ut

For a strategy f on hA; e1; Xi, we say that f is hierarchic if the plays accord-
ing to f make no recursive calls (i.e., no play according to f reaches a state of
the form s = hb1; : : : ; bi; ui, where 9l 2 f1; : : : ; ng such that u 2 Nl and bj 2 Nl,
for some j 2 f1; : : : ig). The following is immediate from the above lemma:

9

Corollary 1. Reachability games admit only hierarchic winning strategies.

We recall that the target set X is a subset of the exits of module A1. An
interesting consequence of the above result is that when we consider modular
strategies, the only global states of the target set which can be reached on a
winning modular strategy are hxi, x 2 X .

Motivated by the above lemma, we give a general de�nition of a call graph: a
call graph is a tuple C = (V;!; �) where V � fA1; : : : ; Ang, (V;!) is an acyclic
graph and �(Ai) � Ex i, for each Ai 2 V .

Let C = (V;!; �) be a call graph for the game hA; e1; Xi. Let Ai be a
module of the game. We now de�ne a game graph AC

i which is a
at game graph
associated with Ai and C, where, intuitively, we replace each call (b; ej) to a
module Aj by a vertex where player 1 can take the game to any return (b; xj)
where xj is in �(Aj). In other words, we are de�ning a game graph under the
assumption that a call to a module Aj could result in returns corresponding to
�(Aj) and we want to solve the game for Ai under these assumptions. The game
graph AC

i will also prohibit any calls to modules that it is not supposed to call,
in accordance with the call graph C.

Formally, AC
i is de�ned as follows: AC

i = (Si; S
0
i ; S

1
i ;
i) where

{ Si = Ni [Calls i [Retnsi.

{ S0i = (V 0
i \Ni) [f(b; x) 2 Retnsi j b 2 V 0

i g.
{ S1i = (V 1

i \Ni) [f(b; x) 2 Retnsi j b 2 V 1
i g [Calls i.

{ The transition function
i is de�ned as follows:

1. If u 2 Ni [Retnsi,
i(u) = Æi(u).

2. If (b; e) 2 Calls i and AY (b) is a successor of Ai in C, then

i((b; e)) = f(b; x) j x 2 �(AY (b))g.

3. If (b; e) 2 Calls i and AY (b) is not a successor of Ai in C, then

i((b; e)) = ;.

The graph AC
i is thus obtained by taking the vertices as the nodes, calls and

returns of Ai. The nodes and returns are partitioned into 0-nodes and 1-nodes
as in Ai. Also, the calls are all deemed to be 1-nodes. The transition function
follows the transition function of Ai for nodes and returns. For a call (b; e), the
transition function maps it to an empty set if Ai is not permitted to call AY (b)

according to the call graph C. Note that if a play reaches such a call, then it is
maximal and hence losing for player 0. If Ai is permitted to call AY (b), then we

take the expected set of exit nodes �
�
AY (b)

�
from the call graph and have edges

to each of the returns corresponding to these exits.

We can now state the main result for which we have developed the de�nitions
above:

Lemma 2. There exists a winning strategy for hA; e1; Xi if and only if there
exists a call graph C = (V;!; �) such that �(A1) � X and for every Ai 2 V ,
player 0 wins the reachability game hAC

i ; ei; �(Ai)i.

10

Proof. If f is a winning strategy for hA; e1; Xi, we show that its call graph Cf

satis�es the requirements of the lemma. In fact, the strategy fi for Ai itself serves

as a winning strategy in hA
Cf

i ; ei; �(Ai)i, for each Ai in the call graph Cf .
Conversely, if there is a call graph C = (V;!; �) that satis�es the properties

of the lemma, then the strategy for any AC
i 2 V serves as a strategy for Ai in the

recursive game and these strategies in fact constitute a winning strategy. ut

We say that a local strategy ffigni=1 is memoryless if for every pair of se-
quences �u; �0u 2 (Ni [Callsi [Retnsi)

�, fi(�u) = fi(�
0u). That is, if the local

strategies' selection depends only on the current node of the play.
As a corollary to the above lemma we have:

Corollary 2. If there is winning strategy for a recursive game, then there is a
local memoryless winning strategy for it.

We can now show that solving reachability games is NP-complete:

Theorem 1. Reachability on recursive (as well as hierarchic) game graphs is
NP-complete.

Proof. The NP procedure works as follows. First, we guess a calling graph C =
(V;!; �) such that A1 2 V and �(A1) � X , where X is the target set. Then,
for every module Ai, we check if there is a winning strategy for player 1 in
hAC

i ; ei; �(Ai)i. If all the games are winning for player 0, we report that player
0 wins the recursive game. It is easy to see that this works in polynomial time.
Correctness follows from Lemma 2.

For the lower bound, we reduce the satis�ability problem of 3-CNF formulas
to solving a reachability game on hierarchic game graphs. The intuition is that
there is a module for each variable, where player 0 has to pick a valuation for
the variable by picking an exit point. The initial module enables player 1 to pick
any clause and call a module corresponding to that clause. In the module for
each clause, player 0 points to a literal that witnesses the clause satisfaction by
calling the module of the corresponding variable. Player 0 wins if all clauses are
satis�ed. Since a modular strategy picks essentially a valuation of the variables
independent of the context in which it is called, player 0 wins i� the formula is
satis�able. ut

4 A labeling algorithm

In this section, we describe an exponential-time realization of the nondetermin-
istic procedure sketched in the previous section. The algorithm we present is an
extension of the usual attractor set construction on
at graphs [13] adapted to
our setting, and, it computes the vertices where player 0 can win in an incre-
mental on-the-
y fashion.

Our algorithm iteratively labels vertices of a recursive game graph with tuples
of sets of exit nodes according to some initialization and update rules. The

11

Algorithm Reach

Initially, each exit u 2 X is labeled by tuples hE1; : : : ; Eni, where E1 = fxg
and Ei = >, for every i > 1. All the other nodes, calls, and returns are
unlabeled.

Labels are updated according to the following rules:
Rule 1: For a 0-node (or a 0-return) v of Ai, if hE1; : : : ; Eni labels v

0 2
Æi(v) then add hE1; : : : ; Eni to labels of v.

Rule 2: For a 1-node (or a 1-return) v of Ai, Æi(v) = fv1; : : : ; vkg, if
(a) hEh

1 ; : : : ; E
h
ni labels vh for h = 1; : : : ; k, and (b) for every l 6= i,

E1

l ; : : : ; E
k
l are pairwise consistent, then add hE0

1; : : : ; E
0

ni to labels of
v, where E0

j =
Sk

h=1
Eh
j for j = 1; : : : ; n.

Rule 3: For a return (b; x) of Ai labeled by hE1; : : : ; Eni where Yi(b) = j,
add hE0

1; : : : ; E
0

ki to labels of x where E0

j = fxg and E0

l = > for l 6= j.
Rule 4: For a call (b; e) of Ai such that Yi(b) = j, let (b; x1); : : : ; (b; xk)

be any k distinct returns from (b; e). Suppose that for h = 1; : : : ; k,
hEh

1 ; : : : ; E
h
ni labels (b; xh) and hE

0

1 ; : : : ; E
0

ni labels e in Aj . If E
0

i = >,
E0

j = fx1; : : : ; xkg, and E0

l ; : : : ; E
k
l are pairwise consistent for l 6= i,

then add hE1; : : : ; Eni to labels of (b; e), where El =
Sk

h=0E
h
l for

l = 1; : : : ; n.
The algorithm halts when there are no more labels that can be added.
Then, it gives an aÆrmative answer if and only if e1 is labeled with a tuple
hE1; : : : ; Eki such that E1 � X.

Fig. 2. Algorithm Reach.

algorithm halts when the computed labeling reaches its �xed-point, i.e., there
are no new labels that can be added.

Let A = hA1; : : : ; Ani be a recursive game graph. Consider the reachability
game hA; e1; Xi. We use a special symbol > and we overload the set union oper-
ator with the rule >[E = E, for any set E. We use v to denote a node, a call, or
a return of Aj , for any j. We describe now the algorithm Reach (Figure 2) that
solves the modular reachability problem. Algorithm Reach consists of labeling
iteratively each v, with tuples of the form hE1; : : : ; Eni, where each Ei is either
a subset of Ex i or is the symbol >. Each v could be labeled at any time with a
set of such labels.

The reason we need to keep these labels, as opposed to just a set in the
attractor-set computation, is to ensure that the strategy we construct is modular.
Since the exit nodes which a strategy fi takes us to in Ai is the important
information we need to know, these labels will ensure that we can consistently
pick a single strategy fi for each Ai in the end.

For a set of maximal �nite plays � , let Final (�) = fs j there is a play of
the form �s 2 �g. Intuitively, Final (�) is the exact set of states the plays in �

end in.

When v 2 Ni [Calls i [Retnsi gets a label hE1; : : : ; Eni, it is supposed to

mean that there exists a local strategy bf = ffig such that the following hold:

12

A1. If �v is the set of all maximal plays starting at hvi and consistent with bf ,
then �v contains only �nite plays and Final(�) = fhxii j xi 2 Eig. Further,
the plays in �v do not enter any Aj , where Ej = >, nor does it re-enter Ai.

A2. Let l be such that El 6= > and l 6= i. Let �l be the set of maximal plays
starting at heli and consistent with bf . Then �l consists of only �nite plays
and Final (�) = fhxli j xl 2 Elg. Further, the plays in �l never enter any
module Aj , where Ej = >, nor does it enter Ai.

Intuitively, when a node in Ai is labeled with hE1; : : : ; Eni, it signi�es that
there is a set of strategies for each module Aj , where Ej 6= >, such that the
strategies drive the play from the current node to some node in Ei. Moreover,
these strategies never make the play enter a module Aj0 for which strategies
are not assumed (i.e. where Ej0 = >). Also, the strategy for Aj drives any play
entering it to the set Ej . Finally, the strategies are guaranteed not to call Ai

For any E0; E00 2 2Exi[f>g, we say that E0 and E00 are consistent if E0 = >,
or E00 = >, or E0 = E00.

Rule 1 makes a 0-node or 0-return u inherit a label of a successor. The idea
is that there is a strategy from u, where the protagonist picks this successor and
plays then according to the strategy assured at the successor, inductively. At a
1-node or a 1-return u, the protagonist has no choice|it can be taken to any of
the successor nodes. The rule hence labels u only if all the successors agree upon
the exit-nodes that they assume for all components. Rule 3 activates an exit of
a module when a return corresponding to that exit is activated in some module;
the activation is similar to the way we initialized our algorithm by activating
the exits corresponding to the target. Calls are labeled using Rule 4: we check
whether the assumptions on all modules by both the called module's entry point
as well as the returns corresponding to the call are consistent, check whether the
called module does not call Ai and label the call by an appropriate label. We
prove now that Reach solves the reachability problem for recursive games.

Lemma 3 (Soundness). Let A = hA1; : : : ; Ani be a recursive game graph. If
a node, a call, or a return v of Ai is labeled by Reach with hE1; : : : ; Eni, then

there exists a local strategy bf = ffig such that (A1) and (A2) hold.

Proof. The lemma is proved by induction on the number of applications of the
update rules. For the initial labeling the lemma is trivially true. The induction
step is fairly straightforward from the inductive hypothesis and the intuition
behind the labeling. For example, if Rule 2 is applied to label a node u in Ai,
then we can pick strategies for the modules from the set of strategies of its
successors whose existence is guaranteed by the induction hypothesis. The only
subtle point is that the selection of local strategies needs to be done carefully to
ensure that the constructed strategy is not recursive (i.e. their call graph is not
recursive). For Rule 2, we pick a strategy for a module Aj (j 6= i) as the strategy
for Aj at a successor v0; however, we ensure that for every Aj0 which is called
by this strategy, we pick the strategy for Aj0 using the strategy at v0. ut

Lemma 4 (Completeness). Let A = hA1; : : : ; Ani be a recursive game graph
and X � Ex 1. If there exists a winning strategy for the protagonist in the reach-

13

ability game hA; e1; Xi, then e1 is labeled by algorithm Reach with hE1; : : : ; Eni
where E1 � X.

Proof. The gist of the proof is as follows. Let f be a winning strategy of the
protagonist in the reachability game hA; e1; Xi, and let Cf = (V;!; �) be its
call graph. We can then de�ne a �nite strategy tree with f that encodes all
the plays according to f as labels of paths in the tree. One can also associate
each vertex of the tree with a node in the recursive game|namely, the node
reached on the play corresponding to the vertex. We then show by induction on
this tree, from the leaves to the root, that for every vertex v in the tree, if the
node corresponding to it is u in Ai, then u gets a label hEu

1 ; : : : ; E
u
mi such that:

Ei � �(Ai) and for every j 6= i, Ej is consistent with �(Aj), if Aj 2 V , and
Ej = >, for every Aj 62 V . The lemma then holds from the fact that the root
gets such a label. ut

The soundness of Reach follows from Lemma 3, by condition A1 (with
v = e1), while Lemma 4 proves its completeness. Reach can require exponential
time since it can generate exponentially many labels. A careful analysis shows
that it works in fact in time exponential in the total number of exit nodes,
exponential in the maximum out-degree of the underlying graphs, but polynomial
in the size of the recursive game graph. Also, note that Reach can stop once
the initial node gets the appropriate label, even before reaching the �xpoint.

5 Extensions

Safety recursive games: Consider a recursive game graph A. A safety condi-
tion requires that the plays stay within a set of good vertices, or equivalently that
bad vertices are avoided. A safety recursive game is hA; e1; Xgoodi, where A is a
recursive game graph, e1 is the entry point of the game module A1, and Xgood

is a subset of A nodes (let us assume that all exits are good). A play of such
a game is winning if all the visited states are of the form hb1; : : : ; br; xi where
x 2 Xgood . If we restrict to modular strategies, safety recursive games are not
dual to reachability recursive games. This is because in both de�nitions, while
the protagonist is forced to use a modular strategy, the adversary is allowed to
use an arbitrary strategy. In contrast with reachability, winning modular strate-
gies in safety recursive games may not be hierarchic (in particular Lemma 1 and
thus Corollary 1 do not hold). Despite this, deciding safety recursive games is
also NP-complete. The hardness result is directly obtained from the reduction
given in the proof of Theorem 1. For membership to NP, we can prove that the
existence of a winning strategy f can be witnessed by a (possibly cyclic) call
graph and a tuple hE1; : : : ; Eni, where Ei is a subset of the exits of Ai, with
the meaning that: 1) in each module Ai, we can visit only calls to modules that
are successors in the call graph, and 2) the winning local strategy in Ai stays
within the safe set Xgood and it either never exits Ai or it exits through an exit
in Ei. Once this is guessed, checking that indeed a strategy is winning reduces
to solving safety games on
at graphs whose total size is polynomial in the size
of the recursive game graph.

14

Handling multiple entries: Consider a recursive game hA; e1; Xi where each
module is allowed to have multiple entry nodes. The semantics of the game
and modular strategies are the natural extensions of those for the single-entry
setting. When a play enters a module, since the strategy for the module knows
the entry point where the module enters, it could follow completely di�erent
strategies for the di�erent entry nodes and still remain modular. Hence, we can
replace every module which has, say, m entry nodes with a set of m modules,
one for each entry point, but where each new module has only one entry. We
suitably change the calls from other modules so that they call the corresponding
modules with the appropriate entry point. It is easy to see that one can check
for a modular strategy on the original game by checking for a modular strategy
in this game. Consider a recursive game G with n modules and let me be the
maximum number of entries to any module. Then, it is easy to see that the above
reduction produces a game graph with at most n �me modules and the overall
size of the game graph is at most jGj3, where jGj is the size of G.

Recursive games with variables: In modeling programs, it is natural to
have variables over a �nite domain that are abstractions of actual variables
and which can be passed from module to module (see, for instance, the SLAM
model checker [3]). We can extend our setup to handle this by augmenting nodes
with the values of variables. These variables can be local, global or passed as
parameters when calls are made to other modules. If a module Ai has ri input
variables, ro output variables and s internal variables, then we can model this
by having 2ri � jEnij entry nodes, 2ro � jEx ij exits, and 2ri+ro+k � jNij internal
nodes (we assume all variables be boolean). Note that a modular strategy will
be such that the strategy for a module can take into account the parameters
that are sent and returned when calling the module, but cannot know the exact
evolution of the of the called program. This makes our setting a very natural
setup where we can deal with the construction of skeletons of program modules
which achieve a particular speci�cation.

Persistent memory strategies: As mentioned in Section 2.3, we can relax
the condition of modular strategies and instead ask for a persistent strategy,
where a strategy for a module can remember not only the play from the last
call to the module, but all parts of the play when the play entered into this
module. The idea is that we can realize the strategy for a module as a program
which has a static memory to store all that happens within the module, and
use this information to drive the play. However, it turns out that checking
whether there is a persistent strategy in a given recursive game is undecidable.
The reduction is from the undecidability of solving multi-player games with
incomplete information [14]. We have:

Theorem 2. The problem of checking whether there is a winning persistent
strategy in a given hierarchical game is undecidable.

15

References

1. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines.
In Proc. of the 13th International Conference on Computer Aided Veri�cation,
CAV'01, LNCS 2102, pages 207{220. Springer, 2001.

2. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49(5):1{42, 2002.

3. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.
In Proceedings of the SPIN 2000 Workshop on Model Checking of Software, LNCS
1885, pages 113{130. Springer, 2000.

4. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proc. 8th Conference on Concurrency
Theory, volume 1243 of LNCS, pages 135{150, Warsaw, July 1997. Springer.

5. J. B�uchi and L. Landweber. Solving sequential conditions by �nite-state strategies.
Trans. AMS, 138:295{311, 1969.

6. T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In Au-
tomata, Languages and Programming, 29th Int'l Coll., ICALP, Malaga, Spain, July
8-13, 2002, Proceedings, volume 2380 of LNCS, pages 704{715. Springer.

7. A. Chakrabarti, L. de Alfaro, T. Henzinger, M. Jurdzinski, and F. Mang. Interface
compatibility checking for software modules. In Proceedings of the 14th Int'l Conf.
on Computer-Aided Veri�cation, LNCS 2404, pages 428{441. Springer, 2002.

8. L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), pages 109{120.
ACM Press, 2001.

9. E. A. Emerson. Model checking and the mu-calculus. In N. Immerman and P. Ko-
laitis, editors, Proceedings of the DIMACS Symposium on Descriptive Complexity
and Finite Models, pages 185{214. American Mathematical Society Press, 1997.

10. O. Kupferman and M. Vardi. Church's problem revisited. The Bulletin of Symbolic
Logic, 5(2):245 { 263, June 1999.

11. O. Kupferman, M. Vardi, and P. Wolper. Module checking. Information and
Computation, 164(2):322{344, 2001.

12. P. Madhusudan and P. S. Thiagarajan. A decidable class of asynchronous dis-
tributed controllers. In Proceedings of the 13th International Conference on Con-
currency Theory (CONCUR '02), LNCS 2421, pages 145{160. Springer, 2002.

13. R. McNaughton. In�nite games played on �nite graphs. Annals of Pure and Applied
Logic, 65:149{184, 1993.

14. G. Peterson and J. Reif. Multiple-person alternation. In Proc. 20st IEEE Sympo-
sium on Foundation of Computer Science, pages 348{363, 1979.

15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th
ACM Symposium on Principles of Programming Languages, Austin, January 1989.

16. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
Proc. 31st IEEE Symposium on Foundation of Computer Sc., pages 746{757, 1990.

17. K. Rudie and W. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Transactions on Automatic Control, 37(11):1692{1708, 1992.

18. W. Thomas. Languages, automata, and logic. Handbook of Formal Language
Theory, III:389{455, 1997.

19. W. Thomas. In�nite games and veri�cation. In Proceedings of the International
Conference on Computer Aided Veri�cation CAV'02, volume 2404 of Lecture Notes
in Computer Science, pages 58{64. Springer, 2002.

20. I. Walukiewicz. Pushdown processes: Games and model-checking. Information and
Computation, 164(2):234{263, January 2001.

16

