Cascading Cosmology

Loading...
Thumbnail Image
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physical Sciences and Mathematics
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Agarwal, Nishant
Bean, Rachel
Contributor
Abstract

We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, π , called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra π self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the π field comes to dominate at late times, the presence of a critical singularity prevents the π field from dominating entirely. Our results open up the interesting possibility that a more general treatment of degravitation in a time-dependent bulk, or taking into account finite brane-thickness effects, may lead to an accelerating universe without a cosmological constant.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2010-04-12
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Suggested Citation: Agarwal, N., R. Bean, J. Khoury and M. Trodden. (2010). "Cascading cosmology." Physical Review D. vol. 81, 084020. © American Physical Society http://dx.doi.org/10.1103/PhysRevD.81.084020
Recommended citation
Collection