Department of Physics Papers

Document Type

Conference Paper

Date of this Version

7-2009

Publication Source

Mathematics of DNA Structure, Function and Interactions

Volume

150

Start Page

123

Last Page

138

DOI

10.1007/978-1-4419-0670-0_6

Abstract

The Tethered Particle Motion (TPM) method has been used to observe and characterize a variety of protein-DNA interactions including DNA loping and transcription. TPM experiments exploit the Brownian motion of a DNA-tethered bead to probe biologically relevant conformational changes of the tether. In these experiments, a change in the extent of the bead’s random motion is used as a reporter of the underlying macromolecular dynamics and is often deemed sufficient for TPM analysis. However, a complete understanding of how the motion depends on the physical properties of the tethered particle complex would permit more quantitative and accurate evaluation of TPM data. For instance, such understanding can help extract details about a looped complex geometry (or multiple coexisting geometries) from TPM data. To better characterize the measurement capabilities of TPM experiments involving DNA tethers, we have carried out a detailed calibration of TPM magnitude as a function of DNA length and particle size. We also explore how experimental parameters such as acquisition time and exposure time affect the apparent motion of the tethered particle. We vary the DNA length from 200 bp to 2.6 kbp and consider particle diameters of 200, 490 and 970 nm. We also present a systematic comparison between measured particle excursions and theoretical expectations, which helps clarify both the experiments and models of DNA conformation.

Keywords

Tethered particle, DNA, Brownian motion, calibration, single molecule

Included in

Physics Commons

Share

COinS
 

Date Posted: 01 May 2017

This document has been peer reviewed.