Departmental Papers (MSE)

Document Type

Conference Paper

Date of this Version

January 2008


We have carried out several measurements in order to understand the process of metal nanoparticle (MNP) film sintering. Small angle neutron scattering has been used to reveal the average diameters of silver and gold nanoparticles (Ag-NPs and Au-NPs) used in this study to be 4.6 and 3.8 nm, respectively, with a size distribution of ca. 20%. Spun- cast Ag-NP and Au-NP films have been sintered at temperature ranges of 80-160ºC and 180-210º, respectively, for various times. The resulting film composition, morphology and electric resistance have been revealed. Upon sintering, the organic content in MNP films reduces to less than 10% while the overall film thickness reduces to about the half of the as-cast film thickness. The resistance of sintered Ag-NP films can vary over more than 7 decades depending on the sintering temperature. The conductivity of Ag-NP films sintered at 150º is 2.4 times 10-8Ωm. The transport properties are affected by both the composition and morphology of sintered films.


Copyright 2008 IEEE. Reprinted from Flexible Electronics and Displays Conference and Exhibition, 2008, pages 1-3.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to By choosing to view this document, you agree to all provisions of the copyright laws protecting it.


metal nanoparticles, ion beam analysis, printable electronics, silver nanoparticles, sintering



Date Posted: 15 September 2008

This document has been peer reviewed.