Automatic Identification of Time-Series Features for Rule-based Forecasting

Loading...
Thumbnail Image
Penn collection
Marketing Papers
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Adya, Monica
Collopy, Fred
Kennedy, Miles
Contributor
Abstract

Rule-based forecasting (RBF) is an expert system that uses features of time series to select and weight extrapolation techniques. Thus, it is dependent upon the identification of features of the time series. Judgmental coding of these features is expensive and the reliability of the ratings is modest. We developed and automated heuristics to detect six features that had previously been judgmentally identified in RBF: outliers, level shifts, change in basic trend, unstable recent trend, unusual last observation, and functional form. These heuristics rely on simple statistics such as first differences and regression estimates. In general, there was agreement between automated and judgmental codings for all features other than functional form. Heuristic coding was more sensitive than judgment and consequently, identified more series with a certain feature than judgmental coding. We compared forecast accuracy using automated codings with that using judgmental codings across 122 series. Forecasts were produced for six horizons, resulting in a total of 732 forecasts. Accuracy for 30% of the 122 annual time series was similar to that reported for RBF. For the remaining series, there were as many that did better with automated feature detection as there were that did worse. In other words, the use of automated feature detection heuristics reduced the costs of using RBF without negatively affecting forecast accuracy.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2001-04-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Postprint version. Published in International Journal of Forecasting, Volume 17, Issue 2, April 2001, pages 143-157. Publisher URL:http://dx.doi.org/10.1016/S0169-2070(01)00079-6
Recommended citation
Collection