Automatic Induction of Rules for Text Simplification

Loading...
Thumbnail Image
Penn collection
IRCS Technical Reports Series
Degree type
Discipline
Subject
Cognitive Neuroscience
Theory and Algorithms
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Chandrasekar, R.
Srinivas, B.
Contributor
Abstract

Long and complicated sentences pose various problems to many state-of-the-art natural language technologies. We have been exploring methods to automatically transform such sentences as to make them simpler. These methods involve the use of a rule-based system, driven by the syntax of the text in the domain of interest. Hand-crafting rules for every domain is time-consuming and impractical. This paper describes an algorithm and an implementation by which generalized rules for simplification are automatically induced from annotated training material with a novel partial parsing technique which combines constituent structure and dependency information. This algorithm described in the paper employs example-based generalizations on linguistically-motivated structures.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1996-12-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
<p>University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-96-30.</p>
Recommended citation
Collection