Cellular Sheaves And Cosheaves For Distributed Topological Data Analysis

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Applied Mathematics
Discipline
Subject
Applied Mathematics
Funder
Grant number
License
Copyright date
2018-09-27T20:18:00-07:00
Distributor
Related resources
Contributor
Abstract

This dissertation proposes cellular sheaf theory as a method for decomposing data analysis problems. We present novel approaches to problems in pursuit and evasion games and topological data analysis, where cellular sheaves and cosheaves are used to extract global information from data distributed with respect to time, boolean constraints, spatial location, and density. The main contribution of this dissertation lies in the enrichment of a fundamental tool in topological data analysis, called persistent homology, through cellular sheaf theory. We present a distributed computation mechanism of persistent homology using cellular cosheaves. Our construction is an extension of the generalized Mayer-Vietoris principle to filtered spaces obtained via a sequence of spectral sequences. We discuss a general framework in which the distribution scheme can be adapted according to a user-specific property of interest. The resulting persistent homology reflects properties of the topological features, allowing the user to perform refined data analysis. Finally, we apply our construction to perform a multi-scale analysis to detect features of varying sizes that are overlooked by standard persistent homology.

Advisor
Robert W. Ghrist
Date of degree
2018-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation